Matching Items (11,879)
Filtering by

Clear all filters

152773-Thumbnail Image.png
Description
The main objective of this study is to numerically investigate: (i) the ionic transport, especially chloride ion penetration into cementitious materials under imposed electric fields, and (ii) moisture transport through cracked concretes as a function of the crack geometry. Numerical methods were implemented to simulate the ionic transport process, based

The main objective of this study is to numerically investigate: (i) the ionic transport, especially chloride ion penetration into cementitious materials under imposed electric fields, and (ii) moisture transport through cracked concretes as a function of the crack geometry. Numerical methods were implemented to simulate the ionic transport process, based on coupling the Nernst-Planck equation and Poisson's equation to account for transport dominated by electromigration. This mathematical model was also modified to account for the chloride binding mechanism (physical and chemical trapping of chlorides by the cement hydrates) and the concentration dependence of the diffusion coefficient of each ion in the transport process. To validate the numerical model, experimental data from a companion work was used in this study. The non-steady state migration test, which is one of the common accelerated chloride ion transport test, is numerically simulated. The simulation provides a linear relationship between ionic concentration and ionic flux, which indicates that the diffusion part is negligible under a strong external voltage environment. The numerical models along with adjustments for the concentration-dependent diffusion coefficients, a pore structure factor (from electrical measurements) and chloride binding considerations are found to be successful in predicting the chloride penetration depth into plain and modified concretes under imposed electrical potentials. Moisture transport through cracked concrete was examined in the second part of this thesis. To better understand the crack's influence on the permeability, modified Louis' equation was chosen to relate the permeability with crack characteristics. 3D concrete crack models were developed using a MATLAB program with distinct crack tortuosities, roughnesses and sizes. As a comparison, Navier-Stokes equation and the Lattice Boltzmann method were also applied on the 3D model of the cracked concrete to evaluate their permeability. The methodology developed here is expected to be useful in understanding the influence of cracking on moisture transport, and when properly coupled with an ionic transport model that will be further developed, helps comprehensively understand the coupling effects of moisture and ionic transport on deterioration in concrete structures.
ContributorsYang, Pu (Author) / Neithalath, Narayanan (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152932-Thumbnail Image.png
Description
The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and

The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites.
ContributorsKachala, Robert (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
152620-Thumbnail Image.png
Description
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in

The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
ContributorsAswani, Karan (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156460-Thumbnail Image.png
Description
Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind.

Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind. In the case of polymeric fibers, due to hydrophobicity and lack of any chemical bond between the fiber and matrix, the weak interface zone limits the ability of the fibers to effectively carry the load that is on the matrix phase. Depending on the fiber’s surface asperity, shape, chemical nature, and mechanical bond characteristic of the load transfer between matrix and fiber can be altered so that the final composite can be improved. These modifications can be carried out by means of thermal treatment, mechanical surface modifications, or chemical changes The objective of this study is to measure and document the effect of gamma ray irradiation on the mechanical properties of macro polymeric fibers. The objective is to determine the mechanical properties of macro-synthetic fibers and develop guidelines for treatment and characterization that allow for potential positive changes due to exposure to irradiation. Fibers are exposed to various levels of ionizing radiation and the tensile, interface and performance in a mortar matrix are documented. Uniaxial tensile tests were performed on irradiated fibers to study fiber strength and failure pattern. SEM tests were carried out in order to study the surface characteristic and effect of different radiation dose on polymeric fiber. The interaction of the irradiated fiber with the cement composite was studied by a series of quasi-static pullout test for a specific embedded length. As a final task, flexural tests were carried out for different irradiated fibers to sum up the investigation. An average increase of 13% in the stiffness of the fiber was observed for 5 kGy of radiation. Flexural tests showed an average increase of 181% in the Req3 value and 102 % in the toughness of the sample was observed for 5 kGy of dose.
ContributorsTiwari, Sanchay Sushil (Author) / Mobasher, Barzin (Thesis advisor) / Neithalath, Narayanan (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133341-Thumbnail Image.png
Description
Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen

Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen events can increase its potential for success or failure. With this in mind, there is no better bridge between the here and now and the future than planning for change in order to move a company toward preparing for change, adapting to change and achieving optimal results. Interested in taking a step toward the digital age, Alpha Homes Management, Inc. (Alpha Homes) sought our help to explore ideas and options to take their company to a new level. This Barrett Creative Project was centered on designing a system for Alpha Homes that will replace their outdated paper-based system with a more digital one. This aligns with the project also featured as a capstone project as required by the information technology degree expectations. In supplement to the capstone, and for the Barrett Creative Project, the final product was presented to the owners of Alpha Homes Management, Inc. to be utilized by the business. The end goal is to provide a platform which provides a paperless environment for documentation and bring the company a step closer to having a robust internet presence. Now that the web-based application product has been created and presented, the testing phase can now begin to evaluate its efficacy.
ContributorsBrice-Nash, Tristan (Co-author) / Alfawzan, Mohammad (Co-author) / Doheny, Damien (Thesis director) / Rodriguez, Carlos (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133342-Thumbnail Image.png
Description
An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is

An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is circumstantial and can vary with different situations. In a way, the Japanese idea of honesty reflects how highly they value loyalty. This overlap of values results in the lack of an ethical dilemma for the Japanese, which creates a new risk for fraud. Without this struggle, a Japanese employee does not have strong justification against committing fraud if it aligns with his values of honesty and loyalty.
This paper looks at the Japanese values relating to honesty and loyalty to show how much these ideas overlap. The lack of a conflict of values creates a risk for fraud, which will be shown through an analysis of the scandals of two Japanese companies, Toshiba and Olympus. These scandals shine light on the complexity of the ethical dilemma for the Japanese employees; since their sense of circumstantial honesty encourages them to lie if it maintains the harmony of the group, there is little stopping them from committing the fraud that their superiors asked them to commit.
In a global economy, understanding the ways that values impact business and decisions is important for both interacting with others and anticipating potential conflicts, including those that may result in or indicate potential red flags for fraud.
ContributorsTabar, Kelly Ann (Author) / Samuelson, Melissa (Thesis director) / Goldman, Alan (Committee member) / WPC Graduate Programs (Contributor) / W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133343-Thumbnail Image.png
Description
This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider

This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider segmentation and the products and platforms that best target them in order to maximize revenue. A survey was performed with a sample size of 314 participants to find out consumer behavior and preference as well as producer situation. Consumers come from both the United States and abroad. Customers come directly and almost exclusively from followers. Therefore, increasing the number of followers on Instagram is essential to increasing revenue. Jennifer has time, resource, and ability constraints, while the market has limited potential. The conclusion is that Jennifer should become more organized as a business. To grow her following, she should cater more towards the most popular fandoms (BTS), make art tutorials, consider collaborations, and better inform followers of her products/services available for purchase. The social media platforms key to marketing Jennifer's products are Instagram and Twitter. Other platforms to be used to increase exposure are Tumblr, Amino Apps, DeviantArt, Reddit, and YouTube. She must also declutter all of these virtual storefronts of unnecessary content to varying degrees in order to build ease of access and a trustworthy brand image. The best platforms for transaction is a personal store, RedBubble (a website that allows users to sell a variety of products with their uploaded images printed onto them), Patreon, and in-person at conventions.
ContributorsXu, Everest Christine (Author) / Eaton, Kathryn (Thesis director) / Ingram-Waters, Mary (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05