Matching Items (13,775)
Filtering by

Clear all filters

164860-Thumbnail Image.png
Description

The purpose of this research is to create a model that will benefit this industry and the many changes to come. As of now, there are limited FTC guidelines which limit the protection of content creators, agencies, and brands. That is when I came up with the idea to develo

The purpose of this research is to create a model that will benefit this industry and the many changes to come. As of now, there are limited FTC guidelines which limit the protection of content creators, agencies, and brands. That is when I came up with the idea to develop a model to further improve efficiency of the influencer marketing industry, and to help the entrepreneurs who are leading it. This model provides the framework for a strong start in the influencer marketing industry. Through informational interviews, literary research, field studies, and surveys, the model was developed through the data analysis of each of these tools, based on common themes found within each. This research was conducted from a variety of perspectives, including consumers, brands, agencies, and content creators.

ContributorsFurnas, Madison (Author) / Eaton, John (Thesis director) / Ingram-Waters, Mary (Committee member) / Svirskis, Anthony (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164862-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164863-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164864-Thumbnail Image.png
Description

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically on COVID-19 cough sound classification. All machine learning algorithms developed or implemented in this study were trained using features from Log Mel Spectrograms of healthy and COVID-19 coughing audio. Results are first presented from a study in which an ensemble of a VGG13, CRNN, GCNN, and GCRNN are utilized to classify audio using classical computing. Then, improved results attained using an optimized VGG13 neural network are presented. Finally, our quantum-classical hybrid neural network is designed and assessed in terms of accuracy and number of quantum layers and qubits. Comparisons are made to classical recurrent and convolutional neural networks.

ContributorsEsposito, Michael (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164865-Thumbnail Image.png
Description

The project goal is aimed to research the most pressing issues facing the lithium supply chain today. It then is tasked with charting a path into the future through strategic recommendations that will help reduce risk, and make a greener, cleaner, and more ethical supply chain.

ContributorsLeeson, Van (Author) / Kelman, Jonathan (Thesis director) / Wiedmer, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Supply Chain Management (Contributor)
Created2022-05
164866-Thumbnail Image.png
Description

This project aims to mint NFT's on the Ethereum blockchain with upgraded functionality. This functionality helps user verifiability and increases a user's control over their NFT.

ContributorsHoppe, Aidan (Author) / Boscovic, Dragan (Thesis director) / Pesic, Sasa (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

This is a multimedia project that is comprised of a short form documentary, a digital article and a reflection essay. The main part of this thesis project is a documentary shot, edited, voiced and produced by Nicole Shinn. The documentary focuses on the CROWN Act, a piece of legislation created

This is a multimedia project that is comprised of a short form documentary, a digital article and a reflection essay. The main part of this thesis project is a documentary shot, edited, voiced and produced by Nicole Shinn. The documentary focuses on the CROWN Act, a piece of legislation created in 2019 meant to ban natural hair discrimination. Since 2019, the CROWN Act has passed in over 14 states and 10 cities, including Tucson and Tempe, Arizona most recently. The six minute and 30 second long documentary seeks to educate people on the CROWN Act, what it does, what natural hair discrimination is, how this act has been impactful in Arizona and what national implications it has for legal protections against natural hair discrimination, as well as social acceptance of hair that is different from the Eurocentric standard. The documentary is accompanied by a digital news style article. The article focuses on the stories of a natural hair stylist in Tempe, and two activists in Tempe and Tucson who were instrumental in getting the CROWN Act passed in those cities. The article looks further into why natural hair is so important to the Black community, the struggle Black Americans have faced regarding this discrimination and how members of the Black communities in Tucson and Tempe worked to fight for the right to express themselves through their hair free of discrimination. Lastly, the reflection essay is meant to preface the entire project. To give the viewer a better understanding of how and why I pursued this topic and these mediums for my thesis/creative project. The reflection also walks through what I struggled with, what I learned and what this project means to me and other people that look like me.

ContributorsShinn, Nicole (Author) / Hawthorne James, Venita (Thesis director) / Adams, Allysa (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / School of Social Transformation (Contributor)
Created2022-05
164781-Thumbnail Image.jpg
ContributorsShinn, Nicole (Author) / Hawthorne James, Venita (Thesis director) / Adams, Allysa (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor)
Created2022-05
164782-Thumbnail Image.png
ContributorsShinn, Nicole (Author) / Hawthorne James, Venita (Thesis director) / Adams, Allysa (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor)
Created2022-05