Matching Items (1)

136236-Thumbnail Image.png

Mathematical Modeling: Lights Out!

Description

Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the

Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the solution of a configuration, the game is constructed using a matrix basis in the span of the field Z mod 2.This the game can be modeled by the system Ap=s which will be the center of the investigation when determining the solvability for any n×n board since A is not always invertable leading to some interesting cases. The goal of this thesis was to construct a model that will allow the player to solve for the pushes to attain the zero-state for an nxn system. Constructing the model gave a procedure that will allow to solve the puzzle game. The procedure presented here first uses a simple clearing technique (valid for any board size) to turn off all the lights except in the last row, which we call the standard-clear. The heart of the technique, is to give a way to use the information about which lights remain lit in the last row to determine which switches in the first row need to be pushed before the standard-clear. This part of the solution algorithm we call the first row adjustment, and it depends heavily on the specific board size n of the problem. Finally, after these first row pushes are made, the standard clear will now turn off all the lights including (seemingly magically) the last row. Thus the solution to the Lights Out puzzle of a given size is reduced to finding a first row adjustment for that size. (Please refer to the actual thesis for the full abstract)

Contributors

Created

Date Created
  • 2015-05