Matching Items (26)

132566-Thumbnail Image.png

Developing a Curriculum to Prepare Software Engineers for the Technical Interview Process

Description

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental curriculum to prepare students for the technical interview process. The trial run of the curriculum was received positively by study participants, who experienced an increase in confidence over the duration of the workshop.

Contributors

Agent

Created

Date Created
2019-05

133568-Thumbnail Image.png

Lambda Starship: A Video Game for Teaching Functional Programming with Lisp

Description

The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of state-modifying behavior. Functional programming is finding its way into traditionally

The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of state-modifying behavior. Functional programming is finding its way into traditionally object-oriented and imperative languages, most notably with the introduction of Java 8 and in LINQ for C#. However, no functional programming language has achieved widespread adoption, meaning that students without a formal computer science background who learn technology on-demand for personal projects or for business may not come across functional programming in a significant way. Programmers need a reason to spend time learning these concepts to not miss out on the subtle but profound benefits they provide. I propose the use of a video game as an environment in which learning functional programming is the player's goal. In this carefully constructed video game, learning functional programming is the key to progression. Players will be motivated to learn and will be given an immediate chance to test and demonstrate their understanding. The game, named Lambda Starship (stylized as (lambda () starship)), is a 3D first-person video game. It takes place in a spaceship that, due to extreme magnetic interference, has lost all on-board software while leaving the hardware completely intact. The player is tasked to write software using functional programming paradigms to replace the old software and bring the spaceship back to a working state. Throughout the process, the player is guided by an in-game manual and other descriptive resources. The game is implemented in Unity and scripted using C#. The game's educational and entertainment value was evaluated with a study case. 24 undergraduate students at Arizona State University (ASU) played the game and were surveyed detailing their experience. During play, user statistics were recorded automatically, providing a data-driven way to analyze where players struggled with the concepts introduced in the game. Reception was neutral or positive in both the entertainment and educational sides of the game. A few players expressed concerns about the manual in its form factor and engagement value.

Contributors

Agent

Created

Date Created
2018-05

136283-Thumbnail Image.png

Investigation in Prolog-based Machine Translation with English-Hungarian Case Study

Description

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as a proof-of-concept case study, is discussed and assessed. The benefits

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as a proof-of-concept case study, is discussed and assessed. The benefits and drawbacks of this approach as generalized to Machine Translation systems are also discussed, along with possible areas of future work.

Contributors

Agent

Created

Date Created
2015-05

SMART SCHEDULING FOR INSTRUCTIONAL MODULE DEVELOPMENT SYSTEM

Description

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and tightly coupled component of an instructional module. The Instructional Module Development System, or IMODS, seeks to improve STEM, or ‘science, technology, engineering, and math’, education, by equipping educators with a powerful informational tool that helps guide course design by providing information based on contemporary research about pedagogical methodology and assessment practices. This is particularly salient within the higher-education STEM fields because many instructors come from backgrounds that are more technical and most Ph.Ds. in science fields have traditionally not focused on preparing doctoral candidates to teach. This thesis project aims to apply a multidisciplinary approach, blending educational psychology and computer science, to help improve STEM education. By developing an instructional module-scheduling feature for the Web-based IMODS, Instructional Module Development System, system, we can help instructors plan out and organize their course work inside and outside of the classroom, while providing them with relevant helpful research that will help them improve their courses. This article illustrates the iterative design process to gather background research on pacing of workload and learning activities and their influence on student knowledge acquisition, constructively critique and analyze pre-existing information technology (IT) scheduling tools, synthesize graphical user interface, or GUI, mockups based on the background research, and then implement a functional-working prototype using the IMODs framework.

Contributors

Agent

Created

Date Created
2016-05

129150-Thumbnail Image.png

Integrating Big Data: A Semantic Extract-Transform-Load Framework

Description

Current tools that facilitate the extract-transform-load (ETL) process focus on ETL workflow, not on generating meaningful semantic relationships to integrate data from multiple, heterogeneous sources. A proposed semantic ETL framework applies semantics to various data fields and so allows richer data integration.

Contributors

Created

Date Created
2015-03-01

154372-Thumbnail Image.png

An adaptable iOS mobile application for mobile data collection

Description

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e.

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e. health, traffic, weather forecasts, …etc.). Since the main users of these apps are

researchers, physicians or generally data collectors, it can be extremely challenging for

them to make adjustments or modifications to these applications given that they have

limited or no technical background in coding. Another common issue with MDC

applications is that its functionalities are limited only to data collection and storing. Other

functionalities such as data visualizations, data sharing, data synchronization and/or data updating are rarely found in MDC apps.

This thesis tries to solve the problems mentioned above by adding the following

two enhancements: (a) the ability for data collectors to customize their own applications

based on the project they’re working on, (b) and introducing new tools that would help

manage the collected data. This will be achieved by creating a Java standalone

application where data collectors can use to design their own mobile apps in a userfriendly Graphical User Interface (GUI). Once the app has been completely designed

using the Java tool, a new iOS mobile application would be automatically generated

based on the user’s input. By using this tool, researchers now are able to create mobile

applications that are completely tailored to their needs, in addition to enjoying new

features such as visualize and analyze data, synchronize data to the remote database,

share data with other data collectors and update existing data.

Contributors

Agent

Created

Date Created
2016

153213-Thumbnail Image.png

Distributed SPARQL over big RDF data: a comparative analysis using Presto and MapReduce

Description

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the volume of RDF data grew to exponential proportions, the limitations of these systems became apparent and researchers began to focus on using big data analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that evaluate these tools for RDF data processing have been published. In the past two and half years, however, heavy users of big data systems, like Facebook, noted limitations with the query performance of these big data systems and began to develop new distributed query engines for big data that do not rely on map-reduce. Facebook's Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To evaluate the performance Presto for big RDF data processing, a map-reduce program and a compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and Hive) can understand. The evaluation was done on four and eight node Linux clusters installed on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples. The results of the experiment show that Presto has a much higher performance than Hive can be used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-RDF, that can be used to process big RDF data.

Contributors

Agent

Created

Date Created
2014

154625-Thumbnail Image.png

Data science for small businesses

Description

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and find a solution to these problems faced, in the form of a tool which utilizes data science. The tool will have features which will aid the vendor to mine their data which they record themselves and find useful information which will benefit their businesses. Since there is lack of properly documented data, One Class Classification using Support Vector Machine (SVM) is used to build a classifying model that can return positive values for audience that is likely to respond to a marketing strategy. Market basket analysis is used to choose products from the inventory in a way that patterns are found amongst them and therefore there is a higher chance of a marketing strategy to attract audience. Also, higher selling products can be used to the vendors' advantage and lesser selling products can be paired with them to have an overall profit to the business. The tool, as envisioned, meets all the requirements that it was set out to have and can be used as a stand alone application to bring the power of data mining into the hands of a small vendor.

Contributors

Agent

Created

Date Created
2016

154834-Thumbnail Image.png

A semantic framework for integrating and publishing linked data on the Web

Description

Semantic web is the web of data that provides a common framework and technologies for sharing and reusing data in various applications. In semantic web terminology, linked data is the term used to describe a method of exposing and connecting

Semantic web is the web of data that provides a common framework and technologies for sharing and reusing data in various applications. In semantic web terminology, linked data is the term used to describe a method of exposing and connecting data on the web from different sources. The purpose of linked data and semantic web is to publish data in an open and standard format and to link this data with existing data on the Linked Open Data Cloud. The goal of this thesis to come up with a semantic framework for integrating and publishing linked data on the web. Traditionally integrating data from multiple sources usually involves an Extract-Transform-Load (ETL) framework to generate datasets for analytics and visualization. The thesis proposes introducing a semantic component in the ETL framework to semi-automate the generation and publishing of linked data. In this thesis, various existing ETL tools and data integration techniques have been analyzed and deficiencies have been identified. This thesis proposes a set of requirements for the semantic ETL framework by conducting a manual process to integrate data from various sources such as weather, holidays, airports, flight arrival, departure and delays. The research questions that are addressed are: (i) to what extent can the integration, generation, and publishing of linked data to the cloud using a semantic ETL framework be automated; (ii) does use of semantic technologies produce a richer data model and integrated data. Details of the methodology, data collection, and application that uses the linked data generated are presented. Evaluation is done by comparing traditional data integration approach with semantic ETL approach in terms of effort involved in integration, data model generated and querying the data generated.

Contributors

Agent

Created

Date Created
2016

155468-Thumbnail Image.png

Optimizing Performance Measures in Classification Using Ensemble Learning Methods

Description

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically sensitivity and specificity) using ensemble learning methods for classification that can be especially useful in class imbalanced datasets. In this thesis, ensemble learning methods (specifically bagging and boosting) are used to optimize the performance measures (sensitivity and specificity) on a UC Irvine (UCI) 130 hospital diabetes dataset to predict if a patient will be readmitted to the hospital based on various feature vectors. From the experiments conducted, it can be empirically concluded that, by using ensemble learning methods, although accuracy does improve to some margin, both sensitivity and specificity are optimized significantly and consistently over different cross validation approaches. The implementation and evaluation has been done on a subset of the large UCI 130 hospital diabetes dataset. The performance measures of ensemble learners are compared to the base machine learning classification algorithms such as Naive Bayes, Logistic Regression, k Nearest Neighbor, Decision Trees and Support Vector Machines.

Contributors

Agent

Created

Date Created
2017