Matching Items (20)

133568-Thumbnail Image.png

Lambda Starship: A Video Game for Teaching Functional Programming with Lisp

Description

The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of

The functional programming paradigm is able to provide clean and concise solutions to many common programming problems, as well as promote safer, more testable code by encouraging an isolation of state-modifying behavior. Functional programming is finding its way into traditionally object-oriented and imperative languages, most notably with the introduction of Java 8 and in LINQ for C#. However, no functional programming language has achieved widespread adoption, meaning that students without a formal computer science background who learn technology on-demand for personal projects or for business may not come across functional programming in a significant way. Programmers need a reason to spend time learning these concepts to not miss out on the subtle but profound benefits they provide. I propose the use of a video game as an environment in which learning functional programming is the player's goal. In this carefully constructed video game, learning functional programming is the key to progression. Players will be motivated to learn and will be given an immediate chance to test and demonstrate their understanding. The game, named Lambda Starship (stylized as (lambda () starship)), is a 3D first-person video game. It takes place in a spaceship that, due to extreme magnetic interference, has lost all on-board software while leaving the hardware completely intact. The player is tasked to write software using functional programming paradigms to replace the old software and bring the spaceship back to a working state. Throughout the process, the player is guided by an in-game manual and other descriptive resources. The game is implemented in Unity and scripted using C#. The game's educational and entertainment value was evaluated with a study case. 24 undergraduate students at Arizona State University (ASU) played the game and were surveyed detailing their experience. During play, user statistics were recorded automatically, providing a data-driven way to analyze where players struggled with the concepts introduced in the game. Reception was neutral or positive in both the entertainment and educational sides of the game. A few players expressed concerns about the manual in its form factor and engagement value.

Contributors

Agent

Created

Date Created
  • 2018-05

SMART SCHEDULING FOR INSTRUCTIONAL MODULE DEVELOPMENT SYSTEM

Description

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and tightly coupled component of an instructional module. The Instructional Module Development System, or IMODS, seeks to improve STEM, or ‘science, technology, engineering, and math’, education, by equipping educators with a powerful informational tool that helps guide course design by providing information based on contemporary research about pedagogical methodology and assessment practices. This is particularly salient within the higher-education STEM fields because many instructors come from backgrounds that are more technical and most Ph.Ds. in science fields have traditionally not focused on preparing doctoral candidates to teach. This thesis project aims to apply a multidisciplinary approach, blending educational psychology and computer science, to help improve STEM education. By developing an instructional module-scheduling feature for the Web-based IMODS, Instructional Module Development System, system, we can help instructors plan out and organize their course work inside and outside of the classroom, while providing them with relevant helpful research that will help them improve their courses. This article illustrates the iterative design process to gather background research on pacing of workload and learning activities and their influence on student knowledge acquisition, constructively critique and analyze pre-existing information technology (IT) scheduling tools, synthesize graphical user interface, or GUI, mockups based on the background research, and then implement a functional-working prototype using the IMODs framework.

Contributors

Agent

Created

Date Created
  • 2016-05

136283-Thumbnail Image.png

Investigation in Prolog-based Machine Translation with English-Hungarian Case Study

Description

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as

This undergraduate thesis explores the efficacy of developing a translator generator in the Prolog programming language using Lexical Functional Grammars. A bidirectional machine translator between English and Hungarian, developed as a proof-of-concept case study, is discussed and assessed. The benefits and drawbacks of this approach as generalized to Machine Translation systems are also discussed, along with possible areas of future work.

Contributors

Agent

Created

Date Created
  • 2015-05

129150-Thumbnail Image.png

Integrating Big Data: A Semantic Extract-Transform-Load Framework

Description

Current tools that facilitate the extract-transform-load (ETL) process focus on ETL workflow, not on generating meaningful semantic relationships to integrate data from multiple, heterogeneous sources. A proposed semantic ETL framework

Current tools that facilitate the extract-transform-load (ETL) process focus on ETL workflow, not on generating meaningful semantic relationships to integrate data from multiple, heterogeneous sources. A proposed semantic ETL framework applies semantics to various data fields and so allows richer data integration.

Contributors

Created

Date Created
  • 2015-03-01

132566-Thumbnail Image.png

Developing a Curriculum to Prepare Software Engineers for the Technical Interview Process

Description

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in

ASU’s Software Engineering (SER) program adequately prepares students for what happens after they become a developer, but there is no standard for preparing students to secure a job post-graduation in the first place. This project creates and executes a supplemental curriculum to prepare students for the technical interview process. The trial run of the curriculum was received positively by study participants, who experienced an increase in confidence over the duration of the workshop.

Contributors

Agent

Created

Date Created
  • 2019-05

154372-Thumbnail Image.png

An adaptable iOS mobile application for mobile data collection

Description

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made

Mobile data collection (MDC) applications have been growing in the last decade

especially in the field of education and research. Although many MDC applications are

available, almost all of them are tailor-made for a very specific task in a very specific

field (i.e. health, traffic, weather forecasts, …etc.). Since the main users of these apps are

researchers, physicians or generally data collectors, it can be extremely challenging for

them to make adjustments or modifications to these applications given that they have

limited or no technical background in coding. Another common issue with MDC

applications is that its functionalities are limited only to data collection and storing. Other

functionalities such as data visualizations, data sharing, data synchronization and/or data updating are rarely found in MDC apps.

This thesis tries to solve the problems mentioned above by adding the following

two enhancements: (a) the ability for data collectors to customize their own applications

based on the project they’re working on, (b) and introducing new tools that would help

manage the collected data. This will be achieved by creating a Java standalone

application where data collectors can use to design their own mobile apps in a userfriendly Graphical User Interface (GUI). Once the app has been completely designed

using the Java tool, a new iOS mobile application would be automatically generated

based on the user’s input. By using this tool, researchers now are able to create mobile

applications that are completely tailored to their needs, in addition to enjoying new

features such as visualize and analyze data, synchronize data to the remote database,

share data with other data collectors and update existing data.

Contributors

Agent

Created

Date Created
  • 2016

156879-Thumbnail Image.png

Template-Based Question Answering over Linked Data using Recursive Neural Networks

Description

The Semantic Web contains large amounts of related information in the form of knowledge graphs such as DBpedia. These knowledge graphs are typically enormous and are not easily accessible for

The Semantic Web contains large amounts of related information in the form of knowledge graphs such as DBpedia. These knowledge graphs are typically enormous and are not easily accessible for users as they need specialized knowledge in query languages (such as SPARQL) as well as deep familiarity of the ontologies used by these knowledge graphs. So, to make these knowledge graphs more accessible (even for non- experts) several question answering (QA) systems have been developed over the last decade. Due to the complexity of the task, several approaches have been undertaken that include techniques from natural language processing (NLP), information retrieval (IR), machine learning (ML) and the Semantic Web (SW). At a higher level, most question answering systems approach the question answering task as a conversion from the natural language question to its corresponding SPARQL query. These systems then utilize the query to retrieve the desired entities or literals. One approach to solve this problem, that is used by most systems today, is to apply deep syntactic and semantic analysis on the input question to derive the SPARQL query. This has resulted in the evolution of natural language processing pipelines that have common characteristics such as answer type detection, segmentation, phrase matching, part-of-speech-tagging, named entity recognition, named entity disambiguation, syntactic or dependency parsing, semantic role labeling, etc.

This has lead to NLP pipeline architectures that integrate components that solve a specific aspect of the problem and pass on the results to subsequent components for further processing eg: DBpedia Spotlight for named entity recognition, RelMatch for relational mapping, etc. A major drawback in this approach is error propagation that is a common problem in NLP. This can occur due to mistakes early on in the pipeline that can adversely affect successive steps further down the pipeline. Another approach is to use query templates either manually generated or extracted from existing benchmark datasets such as Question Answering over Linked Data (QALD) to generate the SPARQL queries that is basically a set of predefined queries with various slots that need to be filled. This approach potentially shifts the question answering problem into a classification task where the system needs to match the input question to the appropriate template (class label).

This thesis proposes a neural network approach to automatically learn and classify natural language questions into its corresponding template using recursive neural networks. An obvious advantage of using neural networks is the elimination for the need of laborious feature engineering that can be cumbersome and error prone. The input question would be encoded into a vector representation. The model will be trained and evaluated on the LC-QuAD Dataset (Large-scale Complex Question Answering Dataset). The dataset was created explicitly for machine learning based QA approaches for learning complex SPARQL queries. The dataset consists of 5000 questions along with their corresponding SPARQL queries over the DBpedia dataset spanning 5042 entities and 615 predicates. These queries were annotated based on 38 unique templates that the model will attempt to classify. The resulting model will be evaluated against both the LC-QuAD dataset and the Question Answering Over Linked Data (QALD-7) dataset.

The recursive neural network achieves template classification accuracy of 0.828 on the LC-QuAD dataset and an accuracy of 0.618 on the QALD-7 dataset. When the top-2 most likely templates were considered the model achieves an accuracy of 0.945 on the LC-QuAD dataset and 0.786 on the QALD-7 dataset.

After slot filling, the overall system achieves a macro F-score 0.419 on the LC- QuAD dataset and a macro F-score of 0.417 on the QALD-7 dataset.

Contributors

Agent

Created

Date Created
  • 2018

158206-Thumbnail Image.png

Diversifying Relevant Search Results from Social Media Using Community Contributed Images

Description

Availability of affordable image and video capturing devices as well as rapid development of social networking and content sharing websites has led to the creation of new type of content,

Availability of affordable image and video capturing devices as well as rapid development of social networking and content sharing websites has led to the creation of new type of content, Social Media. Any system serving the end user’s query search request should not only take the relevant images into consideration but they also need to be divergent for a well-rounded description of a query. As a result, the automated optimization of image retrieval results that are also divergent becomes exceedingly important.

The main focus of this thesis is to use visual description of a landmark by choosing the most diverse pictures that best describe all the details of the queried location from community-contributed datasets. For this, an end-to-end framework has been built, to retrieve relevant results that are also diverse. Different retrieval re-ranking and diversification strategies are evaluated to find a balance between relevance and diversification. Clustering techniques are employed to improve divergence. A unique fusion approach has been adopted to overcome the dilemma of selecting an appropriate clustering technique and the corresponding parameters, given a set of data to be investigated. Extensive experiments have been conducted on the Flickr Div150Cred dataset that has 30 different landmark locations. The results obtained are promising when evaluated on metrics for relevance and diversification.

Contributors

Agent

Created

Date Created
  • 2020

155250-Thumbnail Image.png

Monitoring and Improving User Compliance and Data Quality For Long and Repetitive Self-Reporting MHealth Surveys

Description

For the past decade, mobile health applications are seeing greater acceptance due to their potential to remotely monitor and increase patient engagement, particularly for chronic disease. Sickle Cell Disease is

For the past decade, mobile health applications are seeing greater acceptance due to their potential to remotely monitor and increase patient engagement, particularly for chronic disease. Sickle Cell Disease is an inherited chronic disorder of red blood cells requiring careful pain management. A significant number of mHealth applications have been developed in the market to help clinicians collect and monitor information of SCD patients. Surveys are the most common way to self-report patient conditions. These are non-engaging and suffer from poor compliance. The quality of data gathered from survey instruments while using technology can be questioned as patients may be motivated to complete a task but not motivated to do it well. A compromise in quality and quantity of the collected patient data hinders the clinicians' effort to be able to monitor patient's health on a regular basis and derive effective treatment measures. This research study has two goals. The first is to monitor user compliance and data quality in mHealth apps with long and repetitive surveys delivered. The second is to identify possible motivational interventions to help improve compliance and data quality. As a form of intervention, will introduce intrinsic and extrinsic motivational factors within the application and test it on a small target population. I will validate the impact of these motivational factors by performing a comparative analysis on the test results to determine improvements in user performance. This study is relevant, as it will help analyze user behavior in long and repetitive self-reporting tasks and derive measures to improve user performance. The results will assist software engineers working with doctors in designing and developing improved self-reporting mHealth applications for collecting better quality data and enhance user compliance.

Contributors

Agent

Created

Date Created
  • 2017

155468-Thumbnail Image.png

Optimizing Performance Measures in Classification Using Ensemble Learning Methods

Description

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically sensitivity and specificity) using ensemble learning methods for classification that can be especially useful in class imbalanced datasets. In this thesis, ensemble learning methods (specifically bagging and boosting) are used to optimize the performance measures (sensitivity and specificity) on a UC Irvine (UCI) 130 hospital diabetes dataset to predict if a patient will be readmitted to the hospital based on various feature vectors. From the experiments conducted, it can be empirically concluded that, by using ensemble learning methods, although accuracy does improve to some margin, both sensitivity and specificity are optimized significantly and consistently over different cross validation approaches. The implementation and evaluation has been done on a subset of the large UCI 130 hospital diabetes dataset. The performance measures of ensemble learners are compared to the base machine learning classification algorithms such as Naive Bayes, Logistic Regression, k Nearest Neighbor, Decision Trees and Support Vector Machines.

Contributors

Agent

Created

Date Created
  • 2017