Matching Items (23)
156783-Thumbnail Image.png
Description
In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of

In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of extensive datasets and the nature of the Inertial Measurement Unit (IMU) data, there are difficulties in applying deep learning techniques to them. Although many machine learning models have good accuracy, most of them assume that training data is available for every user while other works that do not require user data have lower accuracies. MirrorGen is a technique which uses wearable sensor data and generates synthetic videos using hand movements and it mitigates the traditional challenges of vision based recognition such as occlusion, lighting restrictions, lack of viewpoint variations, and environmental noise. In addition, MirrorGen allows for user-independent recognition involving minimal human effort during data collection. It also helps leverage the advances in vision-based recognition by using various techniques like optical flow extraction, 3D convolution. Projecting the orientation (IMU) information to a video helps in gaining position information of the hands. To validate these claims, we perform entropy analysis on various configurations such as raw data, stick model, hand model and real video. Human hand model is found to have an optimal entropy that helps in achieving user independent recognition. It also serves as a pervasive option as opposed to a video-based recognition. The average user independent recognition accuracy of 99.03% was achieved for a sign language dataset with 59 different users, 20 different signs with 20 repetitions each for a total of 23k training instances. Moreover, synthetic videos can be used to augment real videos to improve recognition accuracy.
ContributorsRamesh, Arun Srivatsa (Author) / Gupta, Sandeep K S (Thesis advisor) / Banerjee, Ayan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
155869-Thumbnail Image.png
Description
A medical control system, a real-time controller, uses a predictive model of human physiology for estimation and controlling of drug concentration in the human body. Artificial Pancreas (AP) is an example of the control system which regulates blood glucose in T1D patients. The predictive model in the control system

A medical control system, a real-time controller, uses a predictive model of human physiology for estimation and controlling of drug concentration in the human body. Artificial Pancreas (AP) is an example of the control system which regulates blood glucose in T1D patients. The predictive model in the control system such as Bergman Minimal Model (BMM) is based on physiological modeling technique which separates the body into the number of anatomical compartments and each compartment's effect on body system is determined by their physiological parameters. These models are less accurate due to unaccounted physiological factors effecting target values. Estimation of a large number of physiological parameters through optimization algorithm is computationally expensive and stuck in local minima. This work evaluates a machine learning(ML) framework which has an ML model guided through physiological models. A support vector regression model guided through modified BMM is implemented for estimation of blood glucose levels. Physical activity and Endogenous glucose production are key factors that contribute in the increased hypoglycemia events thus, this work modifies Bergman Minimal Model ( Bergman et al. 1981) for more accurate estimation of blood glucose levels. Results show that the SVR outperformed BMM by 0.164 average RMSE for 7 different patients in the free-living scenario. This computationally inexpensive data driven model can potentially learn parameters more accurately with time. In conclusion, advised prediction model is promising in modeling the physiology elements in living systems.
ContributorsAgrawal, Anurag (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Banerjee, Ayan (Committee member) / Kudva, Yogish (Committee member) / Arizona State University (Publisher)
Created2017
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology<br/>We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsBabbepalli Venkata, Sai Sandilya (Co-author) / Raka, Khyati (Co-author) / Banerjee, Ayan (Thesis director) / Finn, Edward (Thesis director) / Fortunato, Joseph (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and

Artificial Intelligence is quickly growing to be an influential part of our daily lives. Due to this, we believe it is important to analyze how cultural perceptions can influence how we interact and develop technology. We decided to focus on India due to its large economic stature, cultural influence, and influence on the technology industry.

ContributorsRaka, Khyati Pravin (Co-author) / Babbepalli Venkata, Sai Sandilya (Co-author) / Finn, Edward (Thesis director) / Banerjee, Ayan (Thesis director) / Fortunato, Joseph (Committee member) / Computer Science and Engineering Program (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147668-Thumbnail Image.png
Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05
187820-Thumbnail Image.png
Description
With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has

With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has been challenging, especially in healthcare. The data owners lack an automated resource that provides layers of protection on a published dataset with validated statistical values for usability. Differential privacy (DP) has gained a lot of attention in the past few years as a solution to the above-mentioned dual problem. DP is defined as a statistical anonymity model that can protect the data from adversarial observation while still providing intended usage. This dissertation introduces a novel DP protection mechanism called Inexact Data Cloning (IDC), which simultaneously protects and preserves information in published data while conveying source data intent. IDC preserves the privacy of the records by converting the raw data records into clonesets. The clonesets then pass through a classifier that removes potential compromising clonesets, filtering only good inexact cloneset. The mechanism of IDC is dependent on a set of privacy protection metrics called differential privacy protection metrics (DPPM), which represents the overall protection level. IDC uses two novel performance values, differential privacy protection score (DPPS) and clone classifier selection percentage (CCSP), to estimate the privacy level of protected data. In support of using IDC as a viable data security product, a software tool chain prototype, differential privacy protection architecture (DPPA), was developed to utilize the IDC. DPPA used the engineering security mechanism of IDC. DPPA is a hub which facilitates a market for data DP security mechanisms. DPPA works by incorporating standalone IDC mechanisms and provides automation, IDC protected published datasets and statistically verified IDC dataset diagnostic report. DPPA is currently doing functional, and operational benchmark processes that quantifies the DP protection of a given published dataset. The DPPA tool was recently used to test a couple of health datasets. The test results further validate the IDC mechanism as being feasible.
Contributorsthomas, zelpha (Author) / Bliss, Daniel W (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Banerjee, Ayan (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2023
168477-Thumbnail Image.png
Description
Power systems are transforming into more complex and stressed systems each day. These stressed conditions could lead to a slow decline in the power grid's voltage profile and sometimes lead to a partial or total blackout. This phenomenon can be identified by either solving a power flow problem or using

Power systems are transforming into more complex and stressed systems each day. These stressed conditions could lead to a slow decline in the power grid's voltage profile and sometimes lead to a partial or total blackout. This phenomenon can be identified by either solving a power flow problem or using measurement-based real-time monitoring algorithms. The first part of this thesis focuses on proposing a robust power flow algorithm for ill-conditioned systems. While preserving the stable nature of the fixed point (FP) method, a novel distributed FP equation is proposed to calculate the voltage at each bus. The proposed algorithm's performance is compared with existing methods, showing that the proposed method can correctly find the solutions when other methods cannot work due to high condition number matrices. It is also empirically shown that the FP algorithm is more robust to bad initialization points. The second part of this thesis focuses on identifying the voltage instability phenomenon using real-time monitoring algorithms. This work proposes a novel distributed measurement-based monitoring technique called voltage stability index (VSI). With the help of PMUs and communication of voltage phasors between neighboring buses, the processors embedded at each bus in the smart grid perform simultaneous online computations of VSI. VSI enables real-time identification of the system's critical bus with minimal communication infrastructure. Its benefits include interpretability, fast computation, and low sensitivity to noisy measurements. Furthermore, this work proposes the ``local static-voltage stability index" (LS-VSI) that removes the minimal communication requirement in VSI by requiring only one PMU at the bus of interest. LS-VSI also solves the issue of Thevenin equivalent parameter estimation in the presence of noisy measurements. Unlike VSI, LS-VSI incorporates the ZIP load models and load tap changers (LTCs) and successfully identifies the bifurcation point considering ZIP loads' impact on voltage stability. Both VSI and LS-VSI are useful to monitor the voltage stability margins in real-time using the PMU measurements from the field. However, they cannot indicate the onset of voltage emergency situations. The proposed LD-VSI uses the dynamic measurements of the power system to identify the onset of a voltage emergency situation with an alarm. Compared to existing methods, it is shown that it is more robust to PMU measurement noise and can also identify the voltage collapse point while the existing methods have issues with the same.
ContributorsGuddanti, Kishan Prudhvi (Author) / Weng, Yang (Thesis advisor) / Banerjee, Ayan (Committee member) / Zhang, Baosen (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2021
171782-Thumbnail Image.png
Description
Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software development, this problem is complicated as there may be hundreds

Security requirements are at the heart of developing secure, invulnerable software. Without embedding security principles in the software development life cycle, the likelihood of producing insecure software increases, putting the consumers of that software at great risk. For large-scale software development, this problem is complicated as there may be hundreds or thousands of security requirements that need to be met, and it only worsens if the software development project is developed by a distributed development team. In this thesis, an approach is provided for software security requirement traceability for large-scale and complex software development projects being developed by distributed development teams. The approach utilizes blockchain technology to improve the automation of security requirement satisfaction and create a more transparent and trustworthy development environment for distributed development teams. The approach also introduces immutability, auditability, and non-repudiation into the security requirement traceability process. The approach is evaluated against existing software security requirement solutions.
ContributorsKulkarni, Adi Deepak (Author) / Yau, Stephen S. (Thesis advisor) / Banerjee, Ayan (Committee member) / Wang, Ruoyu (Committee member) / Baek, Jaejong (Committee member) / Arizona State University (Publisher)
Created2022
171617-Thumbnail Image.png
Description
Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies

Ontologies play an important role in storing and exchanging digitized data. As the need for semantic web information grows, organizations from around the globe has defined ontologies in different domains to better represent the data. But different organizations define ontologies of the same entity in their own way. Finding ontologies of the same entity in different fields and domains has become very important for unifying and improving interoperability of data between these multiple domains. Many different techniques have been used over the year, including human assisted, automated and hybrid. In recent years with the availability of many machine learning techniques, researchers are trying to apply these techniques to solve the ontology alignment problem across different domains. In this study I have looked into the use of different machine learning techniques such as Support Vector Machine, Stochastic Gradient Descent, Random Forest etc. for solving ontology alignment problem with some of the most commonly used datasets found from the famous Ontology Alignment Evaluation Initiative (OAEI). I have proposed a method OntoAlign which demonstrates the importance of using different types of similarity measures for feature extraction from ontology data in order to achieve better results for ontology alignment.
ContributorsNasim, Tariq M (Author) / Bansal, Srividya (Thesis advisor) / Mehlhase, Alexandra (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2022
171654-Thumbnail Image.png
Description
The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability of data has allowed domain experts to investigate, study and

The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability of data has allowed domain experts to investigate, study and discover inherent patterns in diseases from new perspectives and in turn, further the field of medicine. Storage and analysis of this data in real time aids in enhancing the response time and efficiency of doctors and health care specialists. However, due to the time critical nature of most life- threatening diseases, there is a growing need to make informed decisions prior to the occurrence of any fatal outcome. Alongside time sensitivity, analyzing data specific to diseases and their effects on an individual basis leads to more efficient prognosis and rapid deployment of cures. The primary challenge in addressing both of these issues arises from the time varying and time sensitive nature of the data being studied and in the ability to successfully predict anomalous events using only observed data.This dissertation introduces adaptive machine learning algorithms that aid in the prediction of anomalous situations arising due to abnormalities present in patients diagnosed with certain types of diseases. Emphasis is given to the adaptation and development of algorithms based on an individual basis to further the accuracy of all predictions made. The main objectives are to learn the underlying representation of the data using empirical methods and enhance it using domain knowledge. The learned model is then utilized as a guide for statistical machine learning methods to predict the occurrence of anomalous events in the near future. Further enhancement of the learned model is achieved by means of tuning the objective function of the algorithm to incorporate domain knowledge. Along with anomaly forecasting using multi-modal data, this dissertation also investigates the use of univariate time series data towards the prediction of onset of diseases using Bayesian nonparametrics.
ContributorsDas, Subhasish (Author) / Gupta, Sandeep K.S. (Thesis advisor) / Banerjee, Ayan (Committee member) / Indic, Premananda (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2022