Matching Items (5)
Filtering by

Clear all filters

128723-Thumbnail Image.png
Description

Recent studies have reported a greater prevalence of spin turns, which are more unstable than step turns, in older adults compared to young adults in laboratory settings. Currently, turning strategies can only be identified through visual observation, either in-person or through video. This paper presents two unique methods and their

Recent studies have reported a greater prevalence of spin turns, which are more unstable than step turns, in older adults compared to young adults in laboratory settings. Currently, turning strategies can only be identified through visual observation, either in-person or through video. This paper presents two unique methods and their combination to remotely monitor turning behavior using three uniaxial gyroscopes. Five young adults performed 90° turns at slow, normal, and fast walking speeds around a variety of obstacles while instrumented with three IMUs (attached on the trunk, left and right shank). Raw data from 360 trials were analyzed. Compared to visual classification, the two IMU methods’ sensitivity/specificity to detecting spin turns were 76.1%/76.7% and 76.1%/84.4%, respectively. When the two methods were combined, the IMU had an overall 86.8% sensitivity and 92.2% specificity, with 89.4%/100% sensitivity/specificity at slow speeds. This combined method can be implemented into wireless fall prevention systems and used to identify increased use of spin turns. This method allows for longitudinal monitoring of turning strategies and allows researchers to test for potential associations between the frequency of spin turns and clinically relevant outcomes (e.g., falls) in non-laboratory settings.

ContributorsFino, Peter C. (Author) / Frames, Christopher W. (Author) / Lockhart, Thurmon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-06
128613-Thumbnail Image.png
Description

Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants’ fall risks are modified

Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants’ fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk.

ContributorsSoangra, Rahul (Author) / Lockhart, Thurmon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-31
129318-Thumbnail Image.png
Description

Despite the prevalence of directional changes during every-day gait, relatively little is known about turning compared to straight gait. While the center of mass (COM) movement during straight gait is well characterized, the COM trajectory and the factors that influence it are less established for turning. This study investigated the

Despite the prevalence of directional changes during every-day gait, relatively little is known about turning compared to straight gait. While the center of mass (COM) movement during straight gait is well characterized, the COM trajectory and the factors that influence it are less established for turning. This study investigated the influence of a corner׳s height on the COM trajectory as participants walked around the corner. Ten participants (25.3±3.74 years) performed both 90° step and spin turns to the left at self-selected slow, normal, and fast speeds while walking inside a marked path. A pylon was placed on the inside corner of the path. Four different pylon heights were used to correspond to heights of everyday objects: 0 cm (no object), 63 cm (box, crate), 104 cm (desk, table, counter), 167 cm (shelf, cabinet). Obstacle height was found to significantly affect the COM trajectory. Taller obstacles resulted in more distance between the corner and the COM, and between the corner and the COP. Taller obstacles also were associated with greater curvature in the COM trajectory, indicating a smaller turning radius despite the constant 90° corner. Taller obstacles correlated to an increased required coefficient of friction (RCOF) due to the smaller turning radii. Taller obstacles also tended towards greater mediolateral (ML) COM-COP angles, contrary to the initial hypothesis. Additionally, the COM was found to remain outside the base of support (BOS) for the entire first half of stance phase for all conditions indicating a high risk of falls resulting from slips.

ContributorsFino, Peter C. (Author) / Lockhart, Thurmon (Author) / Fino, Nora F. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-02
129314-Thumbnail Image.png
Description

The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned

The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned to two groups (VR training and control). Both groups went through three sessions including baseline slip, training, and transfer of training on slippery surface. The training group experienced 12 simulated slips using a visual perturbation induced by tilting a VR scene while walking on the treadmill and the control group completed normal walking during the training session. Kinematic, kinetic, and electromyography data were collected during all the sessions. Results demonstrated the proactive adjustments such as increased trunk flexion at heel contact after training. Reactive adjustments included reduced time to peak activations of knee flexors, reduced knee coactivation, reduced time to trunk flexion, and reduced trunk angular velocity after training. In conclusion, the study findings indicate that the VR training was able to generate a perturbation in older adults that evoked recovery reactions and such motor skill can be transferred to the actual slip trials.

ContributorsParijat, Prakriti (Author) / Lockhart, Thurmon (Author) / Liu, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
128650-Thumbnail Image.png
Description

Injuries associated with fall incidences continue to pose a significant burden to persons with Parkinson’s disease (PD) both in terms of human suffering and economic loss. Freezing of gait (FOG), which is one of the symptoms of PD, is a common cause of falls in this population. Although a significant

Injuries associated with fall incidences continue to pose a significant burden to persons with Parkinson’s disease (PD) both in terms of human suffering and economic loss. Freezing of gait (FOG), which is one of the symptoms of PD, is a common cause of falls in this population. Although a significant amount of work has been performed to characterize/detect FOG using both qualitative and quantitative methods, there remains paucity of data regarding real-time detection of FOG, such as the requirements for minimum sensor nodes, sensor placement locations, and appropriate sampling period and update time. Here, the continuous wavelet transform (CWT) is employed to define an index for correctly identifying FOG. Since the CWT method uses both time and frequency components of a waveform in comparison to other methods utilizing only the frequency component, we hypothesized that using this method could lead to a significant improvement in the accuracy of FOG detection. We tested the proposed index on the data of 10 PD patients who experience FOG. Two hundred and thirty seven (237) FOG events were identified by the physiotherapists. The results show that the index could discriminate FOG in the anterior-posterior axis better than other two axes, and is robust to the update time variability. These results suggest that real time detection of FOG may be realized by using CWT of a single shank sensor with window size of 2 s and update time of 1 s (82.1% and 77.1% for the sensitivity and specificity, respectively). Although implicated, future studies should examine the utility of this method in real-time detection of FOG.

ContributorsRezvanian, Saba (Author) / Lockhart, Thurmon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-02