Matching Items (1,077)
Filtering by

Clear all filters

156485-Thumbnail Image.png
Description
Muscular weakness is a common manifestation for Stroke survivors and for patients with Anterior Cruciate Ligament reconstruction leading to reduced functional independence, especially mobility. Several rigid orthotic devices are being designed to assist mobility. However, limitations in majority of these devices are: 1) that they are constrained only to level

Muscular weakness is a common manifestation for Stroke survivors and for patients with Anterior Cruciate Ligament reconstruction leading to reduced functional independence, especially mobility. Several rigid orthotic devices are being designed to assist mobility. However, limitations in majority of these devices are: 1) that they are constrained only to level walking applications, 2) are mostly bulky and rigid lacking user comfort. For these reasons, rehabilitation using soft-robotics can serve as a powerful modality in gait assistance and potentially accelerate functional recovery. The characteristics of soft robotic exosuit is that it’s more flexible, delivers high power to weight ratio, and conforms with the user’s body structure making it a suitable choice. This work explores the implementation of an existing soft robotic exosuit in assisting knee joint mechanism during stair ascent for patients with muscular weakness. The exosuit assists by compensating the lack of joint moment and minimizing the load on the affected limb. It consists of two I-cross-section soft pneumatic actuators encased within a sleeve along with insole sensor shoes and control electronics. The exosuit actuators were mechanically characterized at different angles, in accordance to knee flexion in stair gait, to enable the generation of the desired joint moments. A linear relation between the actuator stiffness and internal pressure as a function of the knee angle was obtained. Results from this characterization along with the insole sensor outputs were used to provide assistance to the knee joint. Analysis of stair gait with and without the exosuit ‘active’ was performed, using surface electromyography (sEMG) sensors, for two healthy participants at a slow walking speed. Preliminary user testing with the exosuit presented a promising 16% reduction in average muscular activity of Vastus Lateralis muscle and a 3.6% reduction on Gluteus Maximus muscle during the stance phase and unrestrained motion during the swing phase of ascent thereby demonstrating the applicability of the soft-inflatable exosuit in rehabilitation.
ContributorsMuthukrishnan, Niveditha (Author) / Polygerinos, Panagiotis (Thesis advisor) / Lockhart, Thurmon (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2018
156840-Thumbnail Image.png
Description
Individuals fluent in sign language who have at least one deaf parent are considered native signers while those with non-signing, hearing parents are non-native signers. Musculoskeletal pain from repetitive motion is more common from non-natives than natives. The goal of this study was twofold: 1) to examine differences in upper

Individuals fluent in sign language who have at least one deaf parent are considered native signers while those with non-signing, hearing parents are non-native signers. Musculoskeletal pain from repetitive motion is more common from non-natives than natives. The goal of this study was twofold: 1) to examine differences in upper extremity (UE) biomechanical measures between natives and non-natives and 2) upon creating a composite measure of injury-risk unique to signers, to compare differences in scores between natives and non-natives. Non-natives were hypothesized to have less favorable biomechanical measures and composite injury-risk scores compared to natives. Dynamometry was used for measurement of strength, electromyography for ‘micro’ rest breaks and muscle tension, optical motion capture for ballistic signing, non-neutral joint angle and work envelope, a numeric pain rating scale for pain, and the modified Strain Index (SI) as a composite measure of injury-risk. There were no differences in UE strength (all p≥0.22). Natives had more rest (natives 76.38%; non-natives 26.86%; p=0.002) and less muscle tension (natives 11.53%; non-natives 48.60%; p=0.008) for non-dominant upper trapezius across the first minute of the trial. For ballistic signing, no differences were found in resultant linear segment acceleration when producing the sign for ‘again’ (natives 27.59m/s2; non-natives 21.91m/s2; p=0.20). For non-neutral joint angle, natives had more wrist flexion-extension motion when producing the sign for ‘principal’ (natives 54.93°; non-natives 46.23°; p=0.04). Work envelope demonstrated the greatest significance when determining injury-risk. Natives had a marginally greater work envelope along the z-axis (inferior-superior) across the first minute of the trial (natives 35.80cm; non-natives 30.84cm; p=0.051). Natives (30%) presented with a lower pain prevalence than non-natives (40%); however, there was no significant difference in the modified SI scores (natives 4.70 points; non-natives 3.06 points; p=0.144) and no association between presence of pain with the modified SI score (r=0.087; p=0.680). This work offers a comprehensive analysis of all the previously identified UE biomechanics unique to signers and helped to inform a composite measure of injury-risk. Use of the modified SI demonstrates promise, although its lack of association with pain does confirm that injury-risk encompasses other variables in addition to a signer’s biomechanics.
ContributorsRoman, Gretchen Anne (Author) / Swan, Pamela (Thesis advisor) / Vidt, Meghan (Committee member) / Peterson, Daniel (Committee member) / Lockhart, Thurmon (Committee member) / Ofori, Edward (Committee member) / Arizona State University (Publisher)
Created2018
157141-Thumbnail Image.png
Description
Injuries and death associated with fall incidences pose a significant burden to society, both in terms of human suffering and economic losses. The main aim of this dissertation is to study approaches that can reduce the risk of falls. One major subset of falls is falls due to neurodegenerative disorders

Injuries and death associated with fall incidences pose a significant burden to society, both in terms of human suffering and economic losses. The main aim of this dissertation is to study approaches that can reduce the risk of falls. One major subset of falls is falls due to neurodegenerative disorders such as Parkinson’s disease (PD). Freezing of gait (FOG) is a major cause of falls in this population. Therefore, a new FOG detection method using wavelet transform technique employing optimal sampling window size, update time, and sensor placements for identification of FOG events is created and validated in this dissertation. Another approach to reduce the risk of falls in PD patients is to correctly diagnose PD motor subtypes. PD can be further divided into two subtypes based on clinical features: tremor dominant (TD), and postural instability and gait difficulty (PIGD). PIGD subtype can place PD patients at a higher risk for falls compared to TD patients and, they have worse postural control in comparison to TD patients. Accordingly, correctly diagnosing subtypes can help caregivers to initiate early amenable interventions to reduce the risk of falls in PIGD patients. As such, a method using the standing center-of-pressure time series data has been developed to identify PD motor subtypes in this dissertation. Finally, an intervention method to improve dynamic stability was tested and validated. Unexpected perturbation-based training (PBT) is an intervention method which has shown promising results in regard to improving balance and reducing falls. Although PBT has shown promising results, the efficacy of such interventions is not well understood and evaluated. In other words, there is paucity of data revealing the effects of PBT on improving dynamic stability of walking and flexible gait adaptability. Therefore, the effects

of three types of perturbation methods on improving dynamics stability was assessed. Treadmill delivered translational perturbations training improved dynamic stability, and adaptability of locomotor system in resisting perturbations while walking.
ContributorsRezvanian, Saba (Author) / Lockhart, Thurmon (Thesis advisor) / Buneo, Christopher (Committee member) / Lieberman, Abraham (Committee member) / Abbas, James (Committee member) / Deep, Aman (Committee member) / Arizona State University (Publisher)
Created2019
133607-Thumbnail Image.png
Description
As life expectancy continually rises, many age-related conditions such as deteriorated gait and decreased stability begin to play a larger role in affecting the quality of life for all individuals. Medical expenses associated with falls in the elderly population surpassed $50 Billion in 2015 alone. Understanding fall risk and developing

As life expectancy continually rises, many age-related conditions such as deteriorated gait and decreased stability begin to play a larger role in affecting the quality of life for all individuals. Medical expenses associated with falls in the elderly population surpassed $50 Billion in 2015 alone. Understanding fall risk and developing robust metrics and methods of assessment has become more important than ever. While traditional fall risk has looked at classical gait parameters, dynamic stability has gained traction as a more accurate representation of stability during active movement and daily activities. This project seeks to determine the effects on the internal perturbation of gait velocity on dynamic stability represented by the Maximal Lyapunov Exponent (MLE) of multiple acceleration vectors, as well as the efficacy of varying methodology used to assess dynamic stability. Data from 15 healthy, college aged individuals was collected. Significant differences were shown between certain gait velocity trials for one analysis of the three methods explored, while overall trends suggested potential differences between gait velocities with other methodologies warranting further investigation.
ContributorsKreisler, Itai Goeta (Author) / Lockhart, Thurmon (Thesis director) / Rezvanian, Saba (Committee member) / W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05