Matching Items (5)
Filtering by

Clear all filters

135660-Thumbnail Image.png
Description
This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
Description
In order to regain functional use of affected limbs, stroke patients must undergo intense, repetitive, and sustained exercises. For this reason, it is a common occurrence for the recovery of stroke patients to suffer as a result of mental fatigue and boredom. For this reason, serious games aimed at reproducing

In order to regain functional use of affected limbs, stroke patients must undergo intense, repetitive, and sustained exercises. For this reason, it is a common occurrence for the recovery of stroke patients to suffer as a result of mental fatigue and boredom. For this reason, serious games aimed at reproducing the movements patients practice during rehabilitation sessions, present a promising solution to mitigating patient psychological exhaustion. This paper presents a system developed at the Center for Cognitive Ubiquitous Computing (CubiC) at Arizona State University which provides a platform for the development of serious games for stroke rehabilitation. The system consists of a network of nodes called Smart Cubes based on the Raspberry Pi (model B) computer which have an array of sensors and actuators as well as communication modules that are used in-game. The Smart Cubes are modular, taking advantage of the Raspberry Pi's General Purpose Input/Output header, and can be augmented with additional sensors or actuators in response to the desires of game developers and stroke rehabilitation therapists. Smart Cubes present advantages over traditional exercises such as having the capacity to provide many different forms of feedback and allowing for dynamically adapting games. Smart Cubes also present advantages over modern serious gaming platforms in the form of their modularity, flexibility resulting from their wireless network topology, and their independence of a monitor. Our contribution is a prototype of a Smart Cube network, a programmable computing platform, and a software framework specifically designed for the creation of serious games for stroke rehabilitation.
ContributorsFakhri, Bijan (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy L. (Committee member) / Tadayon, Ramin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
135798-Thumbnail Image.png
Description
The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.
ContributorsZia, Jonathan Sargon (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Adler, Charles (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131082-Thumbnail Image.png
Description
Markov Chain Monte-Carlo methods are a Bayesian approach to predictive statistics, which takes advantage of prior beliefs and conditions as well as the existing data to produce posterior distributions of relevant parameters. This approach, implementable through the JAGS packaging in R, is promising for its impact on the diagnostics space,

Markov Chain Monte-Carlo methods are a Bayesian approach to predictive statistics, which takes advantage of prior beliefs and conditions as well as the existing data to produce posterior distributions of relevant parameters. This approach, implementable through the JAGS packaging in R, is promising for its impact on the diagnostics space, which is a critical bottleneck for pandemic planning and rapid response. Specifically, these methods provide the means to optimize diagnostic testing, for example, by determining whether it is best to test individuals in a certain locale once or multiple times. This study compares the expected accuracy of single and double testing under two specific conditions, a general and Icelandic test case, in order to ascertain the validity of MCMC methods in this space and inform decisionmakers and future research in the space. Models based on this platform may eventually be tailored to the priors of specific locales. Additionally, the ability to test multiple regimes of real or simulated data while maintaining uncertainty widens the pool of researchers that can impact the space. In future studies, ensemble methods investigating the full range of parameters and their combinations can be studied.
ContributorsSuresh, Tarun (Author) / Naufel, Mark (Thesis director) / Panchanathan, Sethuraman (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05