Matching Items (142)
171391-Thumbnail Image.png
Description
Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS

Bipolar commercial-off-the-shelf (COTS) circuits are increasingly used in spacemissions due to the low cost per part. In space environments these devices are exposed to ionizing radiation that degrades their performance. Testing to evaluate the performance of these devices is a costly and lengthy process. As such methods that can help predict a COTS part’s performance help alleviate these downsides. A modeling software for predicting total ionizing dose (TID), enhanced low dose rate sensitivity (ELDRS), and hydrogen gas on bipolar parts is introduced and expanded upon. The model is then developed in several key ways that expand it’s features and usability in this field. A physics based methodology of simulating interface traps (NIT) to expand the previously experimental only database is detailed. This new methodology is also compared to experimental data and used to establish a link between hydrogen concentration in the oxide and packaged hydrogen gas. Links are established between Technology Computer Aided Design (TCAD), circuit simulation, and experimental data. These links are then used to establish a better foundation for the model. New methodologies are added to the modeling software so that it is possible to simulate transient based characteristics like slew rate.
ContributorsRoark, Samuel (Author) / Barnaby, Hugh (Thesis advisor) / Sanchez Esqueda, Ivan (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2022
171715-Thumbnail Image.png
Description
DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate low voltage systems to DC-AC converters or microgrids. They find

DC-DC converters are widely employed to interface one voltage level with another through step-up or step-down operation. In recent years, step-up DC-DC converters have been a key component in harnessing energy through renewable sources by providing an interface to integrate low voltage systems to DC-AC converters or microgrids. They find increasing applications in battery and fuel cell electric vehicles which can benefit from high and variable DC link voltage. It is important to optimize these converters for higher efficiency while achieving high gain and high power density. Non-isolated DC-DC converters are an attractive option due to the reduced complexity of magnetic design, smaller size, and lower cost. However, in these topologies, achieving a very high gain along with high efficiency has been a challenge. This work encompasses different non-isolated high gain DC-DC converters for electric vehicle and renewable energy applications. The converter topologies proposed in this work can easily achieve a conversion ratio above 20 with lower voltage and current stress across devices. For applications requiring wide input or output voltage range, different control schemes, as well as modified converter configurations, are proposed. Moreover, the converter performance is optimized by employing wide band-gap devices-based hardware prototypes. It enables higher switching frequency operation with lower switching losses. In recent times, multiple soft-switching techniques have been introduced which enable higher switching frequency operation by minimizing the switching loss. This work also discusses different soft-switching mechanisms for the high conversion ratio converter and the proposed mechanism improves the converter efficiency significantly while reducing the inductor size. Further, a novel electric vehicle traction architecture with low voltage battery and multi-input high gain DC-DC converter is introduced in this work. The proposed architecture with multiple 48 V battery packs and integrated, multi-input, high conversion ratio DC-DC converters, can reduce the maximum voltage in the vehicle during emergencies to 48 V, mitigate cell balancing issues in battery, and provide a wide variable DC link voltage. The implementation of high conversion ratio converter in multiple configurations for the proposed architecture has been discussed in detail and the proposed converter operation is validated experimentally through a scaled hardware prototype.
ContributorsGupta, Ankul (Author) / Ayyanar, Raja (Thesis advisor) / Lei, Qin (Committee member) / Bakkaloglu, Bertan (Committee member) / Ranjram, Mike (Committee member) / Arizona State University (Publisher)
Created2022
154249-Thumbnail Image.png
Description
The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with

The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with mismatched panels. Sub-panel-level DMPPT is shown to have up to 14.5% more annual energy yield than panel-level DMPPT, and requires an efficient medium power converter.

This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased converter switching frequencies to significantly reduce the size of converter passives and substantially improve transient performance. But, currently available power MOSFETs put a constraint on the highest possible switching frequency due to increased switching losses. The solution is Gallium Nitride based power devices, which deliver figure of merit (FOM) performance at least an order of magnitude higher than existing silicon MOSFETs. Low power loss, high power density, low cost and small die sizes are few of the qualities that make e-GaN superior to its Si counterpart. With careful design, e-GaN can enable a 20-30% improvement in power stage efficiency compared to converters using Si MOSFETs.

The main objective of this research is to develop a highly integrated, high efficiency, 20MHz, hybrid GaN-CMOS DC-DC MPPT converter for a 12V/5A sub-panel. Hard and soft switching boost converter topologies are investigated within this research, and an innovative CMOS gate drive technique for efficiently driving an e-GaN power stage is presented in this work. The converter controller also employs a fast converging analog MPPT control technique.
ContributorsKrishnan Achary, Kiran Kumar (Author) / Kitchen, Jennifer (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2015
154251-Thumbnail Image.png
Description
This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers

This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers for cellular band. The designs are analyzed and compared with respect to non-idealities like finite on-resistance, finite-Q of inductors, bond-wire effects, input signal duty cycle, and supply and component variations. These architectures are designed for non-constant envelope inputs in the form of digitally modulated signals such as RFPWM, which undergo duty cycle variation. After comparing the three topologies, this work concludes that the inverse push-pull class-E power amplifier shows lower efficiency degradation at reduced duty cycles. For GaN based discrete power amplifiers which have less drain capacitance compared to GaAs or CMOS and where the switch loss is dominated by wire-bonds, an inverse push-pull class-E gives highest output power at highest efficiency. Push-pull class-E can give efficiencies comparable to inverse push-pull class-E in presence of bondwires on tuning the Zero-Voltage Switching (ZVS) network components but at a lower output power. Current-Mode Class-D (CMCD) is affected most by the presence of bondwires and gives least output power and efficiency compared to other two topologies. For systems dominated by drain capacitance loss or which has no bondwires, the CMCD and push-pull class-E gives better output power than inverse push-pull class-E. However, CMCD is more suitable for high breakdown voltage process.
ContributorsShukla, Shishir Ramasare (Author) / Kitchen, Jennifer N (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
154267-Thumbnail Image.png
Description
Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software

Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software and services of IoT system focus on data collection and processing to make decisions, the underlying hardware is responsible for sensing the information, preprocess and transmit it to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid prototyping platforms that would help accelerate the hardware design process. However, depending on the target IoT application, different sensors are required to sense the signals such as heart-rate, temperature, pressure, acceleration, etc., and there is a great need for reconfigurable platforms that can prototype different sensor interfacing circuits.

This thesis primarily focuses on two important hardware aspects of an IoT system: (a) an FPAA based reconfigurable sensing front-end system and (b) an FPGA based reconfigurable processing system. To enable reconfiguration capability for any sensor type, Programmable ANalog Device Array (PANDA), a transistor-level analog reconfigurable platform is proposed. CAD tools required for implementation of front-end circuits on the platform are also developed. To demonstrate the capability of the platform on silicon, a small-scale array of 24×25 PANDA cells is fabricated in 65nm technology. Several analog circuit building blocks including amplifiers, bias circuits and filters are prototyped on the platform, which demonstrates the effectiveness of the platform for rapid prototyping IoT sensor interfaces.

IoT systems typically use machine learning algorithms that run on the servers to process the data in order to make decisions. Recently, embedded processors are being used to preprocess the data at the energy-constrained sensor node or at IoT gateway, which saves considerable energy for transmission and bandwidth. Using conventional CPU based systems for implementing the machine learning algorithms is not energy-efficient. Hence an FPGA based hardware accelerator is proposed and an optimization methodology is developed to maximize throughput of any convolutional neural network (CNN) based machine learning algorithm on a resource-constrained FPGA.
ContributorsSuda, Naveen (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Yu, Shimeng (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2016
154317-Thumbnail Image.png
Description
Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of

Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of complementary metal-oxide-semiconductor (CMOS) circuits. The step-by-step design procedure for the traditional circuit is technology-node independent, can be fully automated, and aims to achieve a minimal area design that meets specified leakage and ESD specifications under all valid process, voltage, and temperature (PVT) conditions. The first novel rail clamp circuit presented employs a comparator inside the traditional circuit to reduce the value of the time constant needed. The second circuit uses a dynamic time constant approach in which the value of the time constant is dynamically adjusted after the clamp is triggered. Important metrics for the two new circuits such as ESD performance, latch-on immunity, clamp recovery time, supply noise immunity, fastest power-on time supported, and area are evaluated over an industry-standard PVT space using SPICE simulations and measurements on a fabricated 40 nm test chip.
ContributorsVenkatasubramanian, Ramachandran (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
157763-Thumbnail Image.png
Description
A wideband hybrid envelope tracking modulator utilizing a hysteretic-controlled three-level switching converter and a slew-rate enhanced linear amplifierer is presented. In addition to smaller ripple and lower losses of three-level switching converters, employing the proposed hysteresis control loop results in a higher speed loop and wider bandwidth converter, enabling over

A wideband hybrid envelope tracking modulator utilizing a hysteretic-controlled three-level switching converter and a slew-rate enhanced linear amplifierer is presented. In addition to smaller ripple and lower losses of three-level switching converters, employing the proposed hysteresis control loop results in a higher speed loop and wider bandwidth converter, enabling over 80MHz of switching frequency. A concurrent sensor circuit monitors and regulates the flying capacitor voltage VCF and eliminates conventional required calibration loop to control it. The hysteretic-controlled three-level switching converter provides a high percentage of power amplifier supply load current with lower ripple, reducing the linear amplifier high-frequency current and ripple cancellation current, improving the overall system efficiency. A slew-rate enhancement (SRE) circuit is employed in the linear amplifier resulting in slew-rate of

over 307V/us and bandwidth of over 275MHz for the linear amplifier. The slew-rate enhancement circuit provides a parallel auxiliary current path directly to the gate of the class-AB output stage transistors, speeding-up the charging or discharging of out-

put without modifying the operating point of the remaining linear amplifier, while maintaining the quiescent current of the class-AB stage. The supply modulator is fabricated in 65nm CMOS process. The measurement results show the tracking of LTE-40MHz envelope with 93% peak efficiency at 1W output power, while the SRE is disabled. Enabling the SRE it can track LTE-80MHz envelope with peak efficiency of 91%.
ContributorsMahmoudidaryan, Parisa (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Mehdizad Taleie, Shahin (Committee member) / Arizona State University (Publisher)
Created2019
157860-Thumbnail Image.png
Description
Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase

Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required.

The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking.

The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.
ContributorsSingh, Shrikant (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2019
157674-Thumbnail Image.png
Description
State-of-the-art automotive radars use multi-chip Frequency Modulated Continuous Wave (FMCW) radars to sense the environment around the car. FMCW radars are prone to interference as they operate over a narrow baseband bandwidth and use similar radio frequency (RF) chirps among them. Phase Modulated Continuous Wave radars (PMCW) are robust and

State-of-the-art automotive radars use multi-chip Frequency Modulated Continuous Wave (FMCW) radars to sense the environment around the car. FMCW radars are prone to interference as they operate over a narrow baseband bandwidth and use similar radio frequency (RF) chirps among them. Phase Modulated Continuous Wave radars (PMCW) are robust and insensitive to interference as they transmit signals over a wider bandwidth using spread spectrum technique. As more and more cars are equipped with FMCW radars illuminate the same environment, interference would soon become a serious issue. PMCW radars can be an effective solution to interference in the noisy FMCW radar environment. PMCW radars can be implemented in silicon as System-on-a-chip (SoC), suitable for Multiple-Input-Multiple-Output (MIMO) implementation and is highly programmable. PMCW radars do not require highly linear high frequency chirping oscillators thus reducing the size of the final solution.

This thesis aims to present a behavior model for this promising Digitally modulated radar (DMR) transceiver in Simulink/Matlab. The goal of this work is to create a model for the electronic system level framework that simulates the entire system with non-idealities. This model includes a Top Down Design methodology to understand the requirements of the individual modules’ performance and thus derive the specifications for implementing the real chip. Back annotation of the actual electrical modules’ performance to the model closes the design process loop. Using Simulink’s toolboxes, a passband and equivalent baseband model of the system is built for the transceiver with non-idealities of the components built in along with signal processing routines in Matlab. This model provides a platform for system evaluation and simulation for various system scenarios and use-cases of sensing using the environment around a moving car.
ContributorsKalyan, Prassana (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Thesis advisor) / Garrity, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
157717-Thumbnail Image.png
Description
This dissertation focuses on three different efficiency enhancement methods that are applicable to handset applications. These proposed designs are based on three critical requirements for handset application: 1) Small form factor, 2) CMOS compatibility and 3) high power handling. The three presented methodologies are listed below:

1) A transformer-based power combiner architecture

This dissertation focuses on three different efficiency enhancement methods that are applicable to handset applications. These proposed designs are based on three critical requirements for handset application: 1) Small form factor, 2) CMOS compatibility and 3) high power handling. The three presented methodologies are listed below:

1) A transformer-based power combiner architecture for out-phasing transmitters

2) A current steering DAC-based average power tracking circuit for on-chip power amplifiers (PA)

3) A CMOS-based driver stage for GaN-based switched-mode power amplifiers applicable to fully digital transmitters

This thesis highlights the trends in wireless handsets, the motivates the need for fully-integrated CMOS power amplifier solutions and presents the three novel techniques for reconfigurable and digital CMOS-based PAs. Chapter 3, presents the transformer-based power combiner for out-phasing transmitters. The simulation results reveal that this technique is able to shrink the power combiner area, which is one of the largest parts of the transmitter, by about 50% and as a result, enhances the output power density by 3dB.

The average power tracking technique (APT) integrated with an on-chip CMOS-based power amplifier is explained in Chapter 4. This system is able to achieve up to 32dBm saturated output power with a linear power gain of 20dB in a 45nm CMOS SOI process. The maximum efficiency improvement is about ∆η=15% compared to the same PA without APT. Measurement results show that the proposed method is able to amplify an enhanced-EDGE modulated input signal with a data rate of 70.83kb/sec and generate more than 27dBm of average output power with EVM<5%.

Although small form factor, high battery lifetime, and high volume integration motivate the need for fully digital CMOS transmitters, the output power generated by this type of transmitter is not high enough to satisfy the communication standards. As a result, compound materials such as GaN or GaAs are usually being used in handset applications to increase the output power. Chapter 5 focuses on the analysis and design of two CMOS based driver architectures (cascode and house of cards) for driving a GaN power amplifier. The presented results show that the drivers are able to generate ∆Vout=5V, which is required by the compound transistor, and operate up to 2GHz. Since the CMOS driver is expected to drive an off-chip capacitive load, the interface components, such as bond wires, and decoupling and pad capacitors, play a critical role in the output transient response. Therefore, extensive analysis and simulation results have been done on the interface circuits to investigate their effects on RF transmitter performance. The presented results show that the maximum operating frequency when the driver is connected to a 4pF capacitive load is about 2GHz, which is perfectly matched with the reported values in prior literature.
ContributorsMoallemi, Soroush (Author) / Kitchen, Jennifer (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2019