Matching Items (429)
Filtering by

Clear all filters

131469-Thumbnail Image.png
Description
This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from

This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from the Y-Axis. The remaining tests increase the angle five degrees per configuration, allowing the motors to get incrementally closer to each other until no longer viable. Five different tests are outlined below depicting the microscopic changes in the pitch and roll of the device. The on-board controller in the quad-copter tracks both the acceleration and gyroscopic movements of the device to obtain the stability margin of each test. Computational analysis is then used to calculate and compare the values found to determine the most stable configuration.
ContributorsCorino, Tyler Michael (Author) / Kuo, Chen-Yuan (Thesis director) / Lynch, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131475-Thumbnail Image.png
Description
This study explores the relationship between three physics-based predictive models defined by Castruccio et al. (2013), and four different distinct experimental morphologies of lava flows produced in a series of laboratory simulations where polyethylene glycol 600 (PEG) was pumped into an inclined chilled bath of water. The length of the

This study explores the relationship between three physics-based predictive models defined by Castruccio et al. (2013), and four different distinct experimental morphologies of lava flows produced in a series of laboratory simulations where polyethylene glycol 600 (PEG) was pumped into an inclined chilled bath of water. The length of the experimental flow was recorded over time to create an experimental model to later be compared to the physics-based predictive models. The experimental morphologies are pillowed, rifted, folded, and leveed flows which can be characterized by a dimensionless parameter 𝛹, which scales natural lava flows to experimental lava flows and is a ratio of timescales, the characteristic timescale of thermal flux from the vent and the characteristic timescale of crust formation caused by surface cooling (Fink and Griffiths 1990). The three physics-based models are presented such that the downslope gravitational acceleration drives the flow, while either the Newtonian viscosity of the flow, the Yield Strength of the core (YS), or the Yield Strength of the growing crust (YSC) is the primary retarding factor in flow propagation. This study concluded that low 𝛹-value flows (low flux, low temperature, extensive crust formation) are better captured by the YSC model. And although the Newtonian model did not perfectly capture the behavior of any experimental flows in this study, high 𝛹-value flows (high flux, high temperature, little crust formation) that formed levees exhibited the most Newtonian behavior.
ContributorsCourtney, Cara Alexandra (Author) / Clarke, Amanda B. (Thesis director) / Huang, Huei-Ping (Committee member) / Williams, David A. (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131191-Thumbnail Image.png
Description
This thesis will cover the basics of 2-dimensional motion of a parafoil system to determine and
design an altitude controller that will result in the parafoil starting at a location and landing within the
accepted bounds of a target location. It will go over the equations of motion, picking out the key
formulas

This thesis will cover the basics of 2-dimensional motion of a parafoil system to determine and
design an altitude controller that will result in the parafoil starting at a location and landing within the
accepted bounds of a target location. It will go over the equations of motion, picking out the key
formulas that map out how a parafoil moves, and determine the key inputs in order to get the desired
outcome of a controlled trajectory. The physics found in the equations of motion will be turned into
state space representations that organize it into differential equations that coding software can make
use of to make trajectory calculations. MATLAB is the software used throughout the paper, and all code
used in the thesis paper will be written out for others to check and modify to their desires. Important
aspects of parafoil gliding motion will be discussed and tested with variables such as the natural glide
angle and velocity and the utilization of checkpoints in trajectory controller design. Lastly, the region of
attraction for the controller designed in this thesis paper will be discussed and plotted in order to show
the relationship between the four input variables, x position, y position, velocity, and theta.
The controller utilized in this thesis paper was able to plot a successful flight trajectory from
10m in the air to a target location 50m away. This plot is found in figure 18. The parafoil undershot the
target location by about 9 centimeters (0.18% error). This is an acceptable amount of error and shows
that the controller was a success in controlling the system to reach its target destination. When
compared to the uncontrolled flight in figure 17, the target will only be reached when a controller is
applied to the system.
ContributorsTeoharevic, Filip (Author) / Grewal, Anoop (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131203-Thumbnail Image.png
Description
While golf has been around for centuries, the technology associated with the game has evolved significantly in an attempt to improve golfers’ scores. Specifically, researchers at Arizona State University (ASU) have looked at the dimple patterns on golf balls. They found that various dimple shapes, sizes, and patterns can have

While golf has been around for centuries, the technology associated with the game has evolved significantly in an attempt to improve golfers’ scores. Specifically, researchers at Arizona State University (ASU) have looked at the dimple patterns on golf balls. They found that various dimple shapes, sizes, and patterns can have a serious impact on the flight of the ball, thus drastically improving the golfer’s game. This patented technology is the basis of the founding of Dimple Tech, a golf ball technology startup. Dimple Tech was founded by three ASU students in an effort to license the patent to the major golf ball manufacturers (Callaway, Titleist, TaylorMade, etc.). The ultimate goal of this startup was to build traction in any way possible, so the team made a video pitch that was sent to the aforementioned manufacturers. Although no traction came out of it, the project was a success as a market for this product was established and the company has a competitive advantage over other golf companies.
ContributorsStarostecki, Cameron (Co-author) / Kendall, William (Co-author) / Redmond, Michael (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132768-Thumbnail Image.png
Description
This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer

This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer they have power outages every other day lasting between one to four hours, and in the rainy season they have outages once every other week lasting the same amount of time.
The first step in this analysis was collecting relevant data which includes: location, electricity rates, energy consumption, and existing assets. The data was entered into a program called HOMER. HOMER is a program which analyzes an electrical system and determines the best configuration and usage of assets to get the lowest levelized cost of energy (LCOE). In HOMER, five different analyses were performed. They reviewed the hospital’s energy usage over 25 years: the current situation, one of the current situation with added solar panels, and another where the solar panels have single axis tracking. The other two analyses created incentives to have more solar panels, one situation with net metering, and one with a sellback rate of 0.03 $/kWh. The result of the analysis concluded that the ideal situation would have solar panels with a capacity of 300 kW, and the LCOE in this situation will be 0.153 $/kWh. The analysis shows that investing in solar panels will save the hospital approximately $65,500 per year, but the initial investment of $910,000 only allows for a total savings of $61,253 over the life of the project. The analysis also shows that if the electricity company, Sonabel, eventually buys back electricity then net metering would be more profitable than reselling electricity for the hospital.
Solar panels will help the hospital save money over time, but they will not stop power outages from happening at the hospital. For the outages to stop affecting the hospital’s operations they will have to invest in an uninterrupted power supply (UPS). The UPS will power the hospital for the time between when the power goes out and when their generators are turning on which makes it an essential investment. This will stop outages from affecting the hospital, and if the power goes out during the day then the solar panels can help supplement the energy production which will take some of the strain from their generators.
The results of this study will be sent to officials at the hospital and they can decide if the large initial investment justifies the savings. If the solar panels and UPS can save one life, then maybe the large initial investment is worth it.
ContributorsSchmidt, Evin Khalil (Author) / Johnson, Nathan (Thesis director) / Miner, Mark (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132781-Thumbnail Image.png
Description
"Damietta" is a graphic novel that tells the story of my grandparents, Aziza and Mostafa, and their separate journeys from Egypt to the United States to pursue an education. Using elements of color, form, and narrative style, the graphic novel seeks to put the reader into the perspective of a

"Damietta" is a graphic novel that tells the story of my grandparents, Aziza and Mostafa, and their separate journeys from Egypt to the United States to pursue an education. Using elements of color, form, and narrative style, the graphic novel seeks to put the reader into the perspective of a young immigrant seeking a future in an entirely new land. In completing this project, I had to interview my grandparents, illustrate 51 pages on a computer, transpose interviews into a first person story, and learn how to publish a book. As a result of this process, I learned it is wise to start early, make a consistent work schedule, and make multiple rounds of revisions.
ContributorsDeadrick, Samuel W (Author) / Brown, Keith (Thesis director) / Button, Melissa (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132584-Thumbnail Image.png
Description
Emission Spectroscopy is a powerful tool for the identification of mineralogical samples and has been used for decades in labs to study the geology of Earth and Mars. However, the instruments needed to make these measurements are large, expensive and sensitive pieces of equipment that are too cumbersome to use

Emission Spectroscopy is a powerful tool for the identification of mineralogical samples and has been used for decades in labs to study the geology of Earth and Mars. However, the instruments needed to make these measurements are large, expensive and sensitive pieces of equipment that are too cumbersome to use in the field. There are some commercial products that attempt to work in the field, however they perform this task poorly, often resulting in limited applications, poor performance or not being truly portable. My thesis utilizes the TES family of planetary instruments as a source of inspiration for creating a truly portable Fourier Transform InfraRed spectrometer. From this initial design phase, it appears that it is possible to build an instrument with vastly improved capabilities over the current systems on the market. This roughly 12 inch by 7 inch by 8 inch device with a 3-inch diameter telescope is capable of achieving a SNR of over 1000 during a 5 minute scan of a sample allowing for 5 sigma (99.99994% Confidence) identification of 1% spectral features from 5 um to >60 um making this instrument a one of a kind device with high application potential, not only for field geologist but for the future of manned exploration of space. Currently an accurate measurement of costs is not available, however with more development and optimization a total cost of around $50K is feasible while still maintaining the same performance characteristics. If the costs can fall within an acceptable range, this device will not only be technically impressible but viable from a financial standpoint as well.
ContributorsFagan, Ryan Alexander (Author) / Christensen, Phil (Thesis director) / Ruff, Steve (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132596-Thumbnail Image.png
Description
Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).
ContributorsLee, John C (Author) / Phelan, Patrick (Thesis director) / Roedel, Ronald (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132733-Thumbnail Image.png
Description
Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.
ContributorsRiese, Alexander (Author) / Phelan, Patrick (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132427-Thumbnail Image.png
Description
Kokuji are a specific type of character, or Sinograph, present in Japanese script. Kokuji are differentiated from “normal” Sinographs in Japanese, kanji, by the origin. Kokuji are Sinographs of Japanese origin while other kanji in Japanese are of Chinese origin. The purpose of this paper was to explore how this

Kokuji are a specific type of character, or Sinograph, present in Japanese script. Kokuji are differentiated from “normal” Sinographs in Japanese, kanji, by the origin. Kokuji are Sinographs of Japanese origin while other kanji in Japanese are of Chinese origin. The purpose of this paper was to explore how this kind of character has changed since it was first identified and the implications these changes have on Japanese identity. This essay is split into three chapters past the introduction. The first chapter explains the terminology used in the rest of the paper, how Sinographs work, and explores similar phenomena in other scripts. The second chapter focuses on the status of kokuji during two periods of Japanese history, the Edo period (1603-1868) and the Meiji period (1868-1912). The Edo period is relevant because during this period kokuji were first recognized as entities separate from normal kanji. The Meiji period is important because it marks the shift into modern Japan, and it started the linguistic and orthographic reforms that would continue until the late twentieth century. The last chapter takes a closer look at the linguistic reforms that took place during the Taishō period and the Shōwa periods. The Taishō period has Japan still trying to become a “modern” nation and continues some of the language reform from the Meiji period. The Shōwa period post-World War II enacts many of the language reforms that shape modern Japanese language. Through these linguistic reforms we can figure out why kokuji have fallen out of use and why the remaining ones are somewhat common.
ContributorsReyes, Emiliano (Author) / Oh, Young (Thesis director) / Hedberg, William (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05