Matching Items (5,846)
Filtering by

Clear all filters

152551-Thumbnail Image.png
Description
The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method

The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method to predict the presence and severity of asthma, and Chronic Obstructive Pulmonary Disease (COPD). Similarly, the monitoring of CO2 levels in the atmosphere allows for assessment of indoor air quality (IAQ) as the indoor CO2 levels have been proved to be associated with increased prevalence of certain mucous membrane and respiratory sick building syndrome (SBS) symptoms. A pocket-sized CO2 analyzer has been developed for real-time analysis of breath CO2 and environmental CO2. This CO2 analyzer is designed to comprise two key components including a fluidic system for efficient gas sample delivery and a colorimetric detection unit integrated into the fluidic system. The CO2 levels in the gas samples are determined by a disposable colorimetric sensor chip. The sensor chip is a novel composite based sensor that has been optimized to provide fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. The sensor is immune to the presence of various interfering gases in ambient or expired air. The performance of the sensor in real-time breath-by-breath analysis has also been validated by a commercial CO2 detector. Furthermore, a 3D model was created to simulate fluid dynamics of breath and chemical reactions for CO2 assessment to achieve overall understanding of the breath CO2 detection process and further optimization of the device.
ContributorsZhao, Di (Author) / Forzani, Erica S (Thesis advisor) / Lin, Jerry Ys (Committee member) / Torres, Cesar (Committee member) / Tsow, Tsing (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2014
152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014
150839-Thumbnail Image.png
Description
Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified against standard off the shelf software, the results of the tests are discussed in this document. The user-interface is very simple and doesn't require many inputs from the user other than during the initial setting when they have to enter their personal information for the records. The m-health application can be used by doctors as well as by patients. The response of the application is very quick and hence the patients need not wait for a long time to see the results. The environmental monitoring device has a real-time plot displayed on the screen of the smartphone showing concentrations of total volatile organic compounds and airborne particle count in the environment at the location of the device. The programming was done with Microsoft Visual Studio and was written on VB.NET platform. On the applications, the smartphone receives data as raw binary bytes from the device via Bluetooth and this data is processed to obtain the final result. The final result is the concentration of Nitric Oxide in ppb in the Asthma Analyzer device. In the environmental monitoring device, the final result is the concentration of total Volatile Organic Compounds and the count of airborne Particles.
ContributorsGanesan, Srisivapriya (Author) / Tao, Nongjian (Thesis advisor) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
150905-Thumbnail Image.png
Description
This work demonstrates the integration of a wearable particulate detector and a wireless chemical sensor into a single portable system. The detection philosophy of the chemical sensor is based on highly selective and sensitive microfabricated quartz tuning fork arrays and the particle detector detects the particulate level in real-time using

This work demonstrates the integration of a wearable particulate detector and a wireless chemical sensor into a single portable system. The detection philosophy of the chemical sensor is based on highly selective and sensitive microfabricated quartz tuning fork arrays and the particle detector detects the particulate level in real-time using a nephelometric (light scattering) approach. The device integration is realized by carefully evaluating the needs of flow rate, power and data collection. Validation test has been carried out in both laboratory and in field trials such as parking structures and highway exits with high and low traffic emissions. The integrated single portable detection system is capable of reducing the burden for a child to carry multiple devices, simplifying the task of researchers to synchronize and analyze data from different sensors, and minimizing the overall weight, size, and cost of the sensor. It also has a cell phone for data analysis, storage, and transmission as a user-friendly interface. As the chemical and particulate levels present important exposure risks that are of high interests to epidemiologists, the integrated device will provide an easier, wearable and cost effective way to monitor it.
ContributorsGao, Tianle (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
154014-Thumbnail Image.png
Description
Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute

Biosensors aiming at detection of target analytes, such as proteins, microbes, virus, and toxins, are widely needed for various applications including detection of chemical and biological warfare (CBW) agents, biomedicine, environmental monitoring, and drug screening. Surface Plasmon Resonance (SPR), as a surface-sensitive analytical tool, can very sensitively respond to minute changes of refractive index occurring adjacent to a metal film, offering detection limits up to a few ppt (pg/mL). Through SPR, the process of protein adsorption may be monitored in real-time, and transduced into an SPR angle shift. This unique technique bypasses the time-consuming, labor-intensive labeling processes, such as radioisotope and fluorescence labeling. More importantly, the method avoids the modification of the biomarker’s characteristics and behaviors by labeling that often occurs in traditional biosensors. While many transducers, including SPR, offer high sensitivity, selectivity is determined by the bio-receptors. In traditional biosensors, the selectivity is provided by bio-receptors possessing highly specific binding affinity to capture target analytes, yet their use in biosensors are often limited by their relatively-weak binding affinity with analyte, non-specific adsorption, need for optimization conditions, low reproducibility, and difficulties integrating onto the surface of transducers. In order to circumvent the use of bio-receptors, the competitive adsorption of proteins, termed the Vroman effect, is utilized in this work. The Vroman effect was first reported by Vroman and Adams in 1969. The competitive adsorption targeted here occurs among different proteins competing to adsorb to a surface, when more than one type of protein is present. When lower-affinity proteins are adsorbed on the surface first, they can be displaced by higher-affinity proteins arriving at the surface at a later point in time. Moreover, only low-affinity proteins can be displaced by high-affinity proteins, typically possessing higher molecular weight, yet the reverse sequence does not occur. The SPR biosensor based on competitive adsorption is successfully demonstrated to detect fibrinogen and thyroglobulin (Tg) in undiluted human serum and copper ions in drinking water through the denatured albumin.
ContributorsWang, Ran (Author) / Chae, Junseok (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tsow, Tsing (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
136123-Thumbnail Image.png
Description
Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of anesthesiology monitoring in operating rooms. However, its used is limited in other contexts due to deeply engrained protocols, size of

Capnography is the monitoring of concentrations of carbon dioxide in exhaled breath. It allows reliable insight into patients' metabolism, ventilation, and blood circulation. Capnography has become an integral part of anesthesiology monitoring in operating rooms. However, its used is limited in other contexts due to deeply engrained protocols, size of capnographs, and the complexity of its interpretation. Intensive care units and in-home use could greatly benefit by a widespread usage of capnographs. Measuring methods include infrared spectroscopy, mass spectroscopy, and chemical colorimetric analysis. Infrared technology is currently the most widely used and cost-effective method for measuring carbon dioxide. However, this device can be bulky and costly. A novel portable breath CO2 analyzer was developed for this purpose. The analyzer features an accurate colorimetric CO2 sensor that can analyze ETCO2 in real time. Many advancements have been in made in the sensor fabrication process. Nevertheless, research on optimal packaging conditions and accelerated aging times have been limited. In this experiment, carbon dioxide sensors were packaged at four different environmental conditions to test their long-term stability. This was done to determine if these conditions had an effect on sensor degradation. In the second part of the experiment, a separate batch of sensors was placed inside an oven at 48 oC to investigate the effect of stabilization temperature dependence and accelerated aging. In conclusion, the data obtained from the sensors packaged at different conditions could not be concluded to be statistically different. Sensors packaged at ambient conditions had the highest average value at 0.45030 V and the ones at controlled 33% humidity had the lowest at 0.39348 V. The sensors packaged at 8.25% CO2 had the smallest variance in their voltage measurements. From these data, it can be concluded that environmental testing conditions had the greatest effect on the measured signal. The oven experiment showed that sensors rapidly stabilize at high temperature and these stay constant after reaching this stabilization. For future work, the signal difference at different environmental conditions should be done. Control of environmental conditions can be achieved by building a glove box to control temperature and humidity.
ContributorsCorral Clayton, Javier Alfonso (Author) / Forzani, Erica (Thesis director) / Tsow, Tsing (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2015-05