Matching Items (5,849)
Filtering by

Clear all filters

150900-Thumbnail Image.png
Description
Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which

Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which primarily acts through nitric oxide (NO) and cyclooxygenase (COX)-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors (EDHFs). Very few studies have been conducted on small resistance systemic arteries from birds. The hypothesis was that because birds have naturally high glucose and free fatty acid concentrations, ACh-induced vasodilation of isolated arteries from mourning doves (Zenaida macroura) would be independent of endothelial-derived factors and resistant to high glucose-mediated vascular dysfunction. Small resistance mesenteric and cranial tibial (c. tibial) arteries were pre-constricted to 50% of resting inner diameter with phenyleprine then exposed to increasing doses of ACh (10-9 to 10-5 μM) or the NO donor, sodium nitroprusside (SNP; 10-12 to 10-3 μM). For both vessel beds, ACh-induced vasodilation occurred mainly through the activation of potassium channels, whereas vasodilation of mesenteric arteries additionally occurred through COX. Although arteries from both vessel beds fully dilated with exposure to sodium nitroprusside, ACh-mediated vasodilation was independent of NO. To examine the effect of high glucose on endothelium-dependent vasodilation, ACh dose response curves were conducted following exposure of isolated c. tibial arteries to either a control solution (20mM glucose) or high glucose (30mM). ACh-induced vasodilation was significantly impaired (p = 0.013) when exposed to high glucose, but normalized in subsequent vessels with pre-exposure to the superoxide dismutase mimetic tiron (10 mM). Superoxide concentrations were likewise significantly increased (p = 0.0072) following exposure to high glucose. These findings indicate that dove arteries do not appear to have endogenous mechanisms to counteract the deleterious effects of oxidative stress. Additional studies are required to assess whether endogenous mechanisms exist to protect avian vascular reactivity from systemic hyperglycemia.
ContributorsJarrett, Catherine Lee (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
156509-Thumbnail Image.png
Description
Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease is oxidative stress due to free radical accumulation. This intervention study was conducted to evaluate any potential mediation of oxidative

Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease is oxidative stress due to free radical accumulation. This intervention study was conducted to evaluate any potential mediation of oxidative stress using a soil-derived organometallic compound (OMC) with suspected antioxidant properties. A 10-week study was conducted in male Sprague-Dawley rats (n = 42) fed either a high-fat diet (HFD) consisting of 60% kcal from fat or a standard Chow diet containing only 6% kcals from fat. Rats from each diet group were then subdivided into 3 subgroups (n = 6-10 each) that received 0.0 mg/mL, 0.6 mg/mL or 3.0 mg/mL OMC. Neither the diet nor OMC significantly changed protein expression of inducible nitric oxide synthase (iNOS) in isolated aortas. Plasma levels of the inflammatory marker, tumor necrosis factor alpha (TNFα) were below detection after the 10-week trial. Superoxide dismutase (SOD), a scavenger of the free radical, superoxide, was not significantly different following HFD although levels of SOD were significantly higher in Chow rats treated with 0.6 mg/mL OMC compared to HFD rats treated with the same dose (p < 0.05). Lipopolysaccharides (LPS) were significantly increased following 10 weeks of high fat intake (p < 0.05). This increase in endotoxicity was prevented by the high dose of OMC. HFD significantly increased fasting serum glucose levels at both 6 weeks (p < 0.001) and 10 weeks (p < 0.025) compared to Chow controls. The high dose of OMC significantly prevented the hyperglycemic effects of the HFD in rats at 10 weeks (p = 0.021). HFD-fed rats developed hyperinsulinemia after 10 weeks of feeding (p = 0.009), which was not prevented by OMC. The results of this study indicate that OMC may be an effective strategy to help manage diet-induced hyperglycemia and endotoxemia. However, further research is needed to determine the mechanism by which OMC helps prevent hyperglycemia as measures of inflammation (TNFα) and vascular damage (iNOS) were inconclusive.
ContributorsWatson, Deborah F (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2018
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
157201-Thumbnail Image.png
Description
The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive

The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive bacteria associated with the onset of obesity and type 2 diabetes. Although, the most common form of obesity and metabolic syndrome intervention is exercise and diet, these recommendations may not improve severe cases of obesity. Thus, an important relevance of my project was to investigate whether the intake of an organometallic complex (OMC) would prevent the onset of metabolic and gastrointestinal complications associated with high-fat diet intake. I hypothesized that the consumption of a HFD for 6 weeks would promote the development of metabolic and gastrointestinal disease risk factors. Next, it was hypothesized that OMC treatment would decrease metabolic risk factors by improving insulin sensitivity and decreasing weight gain. Finally, I hypothesized that HFD-intake would increase the abundance of gram-positive bacteria associated with gastrointestinal disease. My preliminary data investigated the effects of a 6-week HFD on the development of hepatic steatosis, intestinal permeability and inflammation in male Sprague Dawley rats. I found that a 6-week HFD increases hepatic triglyceride concentrations, plasma endotoxins and promotes the production of pro-inflammatory cytokines in the cecum wall. I then investigated whether OMC treatment could prevent metabolic risk factors in male Sprague-Dawley rats fed a HFD for 10 weeks and found that OMC can mitigate risk factors such hyperglycemia, liver disease, impaired endothelial function, and inflammation. Lastly, I investigated the effects of a 10-week HFD on the gastrointestinal system and found an increase in liver triglycerides and free glycerol and alterations of the distal gut microbiome. My results support the hypothesis that a HFD can promote metabolic risk factors, alter the gut microbiome and increase systemic inflammation and that OMC treatment may help mitigate some of these effects. Together, these studies are among the first to demonstrate the effects of a soil-derived compound on metabolic complications. Additionally, these conclusions also provide an essential basis for future gastrointestinal and microbiome studies of OMC treatment.
ContributorsCrawford, Meli'sa Shaunte (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Whisner, Corrie (Committee member) / Hyatt, Jon-Philippe (Committee member) / Arizona State University (Publisher)
Created2019
157209-Thumbnail Image.png
Description
Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation

Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation and microbial dysbiosis, most notably in the lungs and gastrointestinal (GI) tract. Genistein, a soy isoflavone and dietary polyphenol, has been shown to modulate CFTR function in cell cultures and murine models, as well exert sex-dependent improvement of survival rates in a CF mouse model. However, it is unknown whether dietary genistein affects gut microbiome diversity and community structure in cystic fibrosis. This study sought to examine associations between dietary genistein treatment and gut microbiome diversity and community structure in a murine model of CF. Methods: Twenty-four male and female mice homozygous for the DF508 CFTR gene mutation were maintained on one of three diet regimens for a 45-day period (n=11, standard chow; n=7, Colyte-treated water and standard chow; n=6, 600 mg dietary genistein per kg body weight). One fecal pellet was collected per mouse post-treatment, and microbial genomic DNA was extracted from the fecal samples, quantified, amplified, and sequenced on the Illumina MiSeq platform. QIIME 2 was used to conduct alpha- and beta-diversity analyses on all samples. Results: Measures of alpha-diversity were significantly decreased in the dietary genistein group as compared to either standard chow or Colyte groups. Measures of beta-diversity showed that community structure differed significantly between dietary treatment groups; these differences were further illustrated by distinct clustering of taxa as shown by principal coordinates analysis plots. Conclusion: This 3-arm parallel experimental study showed that dietary genistein treatment was associated with decreased microbial diversity and differences in microbial community structure in DF508 mice.
ContributorsArgo, Katy Bryana (Author) / Whisner, Corrie M (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Sweazea, Karen L (Committee member) / Arizona State University (Publisher)
Created2019
157048-Thumbnail Image.png
Description
Background: Nearly 95% of Americans will develop hypertension, and 67% will not seek treatment. Furthermore, hypertension is the leading risk factor for coronary heart disease. While previous studies have increased the use of blood pressure medication among patients that have received hypertension education, medications may not work for everyone.

Background: Nearly 95% of Americans will develop hypertension, and 67% will not seek treatment. Furthermore, hypertension is the leading risk factor for coronary heart disease. While previous studies have increased the use of blood pressure medication among patients that have received hypertension education, medications may not work for everyone. Due to the life-threatening nature of this condition, it is essential to find an effective alternative for treatment. The purpose of this study was to examine the impact of organometallic complex supplementation on hypertension and left ventricular hypertrophy in 6-week old male Sprague-Dawley rats that were fed either standard rodent chow or a high fat diet for 10 weeks at a university in Arizona.

Methods: Forty-two healthy six-week old male Sprague-Dawley rats were randomly assigned to one of three groups: plain water control, 0.6 mg/ml organometallic complex or 3.0 mg/ml organometallic complex as soon as they arrived. Each rat was then housed individually to prevent the sharing of microbiota through coprophagia. Rats in each treatment group were further divided into two dietary groups that were fed either a high fat diet containing 60% kcal fat that was changed every three days or standard rodent chow. Researchers were not blind to which rat was in each group. At the end of the 10-week study, rats were euthanized with an overdose of sodium pentobarbital (200 mg/kg, i.p.). Heart, left ventricle of the heart, liver, and spleen masses were recorded for each animal. Data were analyzed by two-way ANOVA using SigmaPlot 10.0 software.

Results: At the conclusion of this study, the left ventricle mass of the rats in the high fat diet group were significantly larger than those in the chow group. Neither dose of the organometallic complex supplement prevented these effects induced by high fat feeding.

Conclusion: The organometallic complex supplement was not effective at mitigating the effects of a high fat diet on cardiac hypertrophy in rats. Therefore, this supplement should not be used to treat cardiac hypertrophy.
ContributorsMcCormick, Kelly Ann (Author) / Sweazea, Karen L (Thesis advisor) / Whisner, Corrie M (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2019
153771-Thumbnail Image.png
Description
Background: Despite the reported improvements in glucose regulation associated with flaxseeds (Linum usitatissimum) few clinical trials have been conducted in diabetic participants. Objective: To evaluate the efficacy of ground flaxseed consumption at attenuating hyperglycemia, dyslipidemia, inflammation, and oxidative stress as compared to a control in adults with non-insulin dependent type

Background: Despite the reported improvements in glucose regulation associated with flaxseeds (Linum usitatissimum) few clinical trials have been conducted in diabetic participants. Objective: To evaluate the efficacy of ground flaxseed consumption at attenuating hyperglycemia, dyslipidemia, inflammation, and oxidative stress as compared to a control in adults with non-insulin dependent type 2 diabetes (T2D). Design: In a randomized parallel arm controlled efficacy trial, participants were asked to consume either 28 g/d ground flaxseed or the fiber-matched control (9 g/d ground psyllium husk) for 8 weeks. The study included 17 adults (9 male, 8 females; 46±14 y; BMI: 31.4±5.7 kg/m2) with a diagnosis of T2D ≥ 6 months. Main outcomes measured included: glycemic control (HbA1c, fasting plasma glucose, fasting serum insulin, and HOMA-IR), lipid profile (total cholesterol, LDL-C, HDL-C, total triglycerides, and calculated VLDL-C), markers of inflammation and oxidative stress (TNF-alpha, TBARS, and NOx), and dietary intake (energy, total fat, total fiber, sodium). Absolute net change for measured variables (week 8 values minus baseline values) were compared using Mann-Whitney U non-parametric tests, significance was determined at p ≤ 0.05. Results: There were no significant changes between groups from baseline to week 8 in any outcome measure of nutrient intake, body composition, glucose control, or lipid concentrations. There was a modest decrease in TNF-alpha in the flaxseed group as compared to the control (p = 0.06) as well as a mild decrease in TBARS in the flaxseed as compared to the control group (p = 0.083), though neither were significant. Conclusions: The current study did not detect a measurable association between 28 g/d flaxseed consumption for 8 weeks in T2D participants and improvements in glycemic control or lipid profiles. There was a modest, albeit insignificant, decrease in markers of inflammation and oxidative stress in the flaxseed group as compared to the control, which warrants further study.
ContributorsRicklefs, Kristin (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol S (Committee member) / Gaesser, Glenn (Committee member) / Vega-Lopez, Sonia (Committee member) / Gonzales, Rayna (Committee member) / Arizona State University (Publisher)
Created2015
154900-Thumbnail Image.png
Description
ABSTRACT

Objective: The purpose of this randomized parallel two-arm trial was to examine the effect that an intervention of combining daily almond consumption (2.5 ounces) with a walking program would have on heart rate recovery and resting heart rate when compared to the control group that consumed a placebo (cookie butter)

ABSTRACT

Objective: The purpose of this randomized parallel two-arm trial was to examine the effect that an intervention of combining daily almond consumption (2.5 ounces) with a walking program would have on heart rate recovery and resting heart rate when compared to the control group that consumed a placebo (cookie butter) in men and postmenopausal women, aged 20-69, in Phoenix, Arizona.

Design: 12 men and women from Phoenix, Arizona completed an 8-week walking study (step goal: 10,000 steps per day). Subjects were healthy yet sedentary, non-smokers, free from gluten or nut allergies, who had controlled blood pressure. At week 5, participants were randomized into one of two groups: ALM (2.5 oz of almonds daily for last 3 weeks of trial) or CON (4 tbsp of cookie butter daily for last 3 weeks of trial). Body weight, BMI, and percent body fat were measured using a stadiometer and Tanita at the screening visit. Resting heart rate, heart rate recovery, and anthropometric measurements were taken at weeks 0, 5, and 8.

Results: 8 weeks of walking 10,000 steps per day, with or without 3 weeks of almond consumption did not significantly improve heart rate recovery (p=0.818) or resting heart rate (0.968).

Conclusions: Almond consumption in combination with a walking intervention does not significantly improve heart rate recovery or resting heart rate.
ContributorsMcElaney, Elizabeth Anne (Author) / Johnston, Carol S (Thesis advisor) / Lespron, Christy L (Committee member) / Sweazea, Karen L (Committee member) / Arizona State University (Publisher)
Created2016