Matching Items (20)
154566-Thumbnail Image.png
Description
This research is to address the design optimization of systems for a specified reliability level, considering the dynamic nature of component failure rates. In case of designing a mechanical system (especially a load-sharing system), the failure of one component will lead to increase in probability of failure of remaining components.

This research is to address the design optimization of systems for a specified reliability level, considering the dynamic nature of component failure rates. In case of designing a mechanical system (especially a load-sharing system), the failure of one component will lead to increase in probability of failure of remaining components. Many engineering systems like aircrafts, automobiles, and construction bridges will experience this phenomenon.

In order to design these systems, the Reliability-Based Design Optimization framework using Sequential Optimization and Reliability Assessment (SORA) method is developed. The dynamic nature of component failure probability is considered in the system reliability model. The Stress-Strength Interference (SSI) theory is used to build the limit state functions of components and the First Order Reliability Method (FORM) lies at the heart of reliability assessment. Also, in situations where the user needs to determine the optimum number of components and reduce component redundancy, this method can be used to optimally allocate the required number of components to carry the system load. The main advantage of this method is that the computational efficiency is high and also any optimization and reliability assessment technique can be incorporated. Different cases of numerical examples are provided to validate the methodology.
ContributorsBala Subramaniyan, Arun (Author) / Pan, Rong (Thesis advisor) / Askin, Ronald (Committee member) / Ju, Feng (Committee member) / Arizona State University (Publisher)
Created2016
149538-Thumbnail Image.png
Description
Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way to support end users' on-demand requirements to computing resources, including maturity levels of customizable, multi-tenancy and scalability. To meet requirements of on-demand, my thesis discusses several critical research problems and proposed solutions using real application scenarios. Service providers receive multiple requests from customers, how to prioritize those service requests to maximize the business values is one of the most important issues in cloud. An innovative prioritization model is proposed, which uses different types of information, including customer, service, environment and workflow information to optimize the performance of the system. To provide "on-demand" services, an accurate demand prediction and provision become critical for the successful of the cloud computing. An effective demand prediction model is proposed, and applied to a real mortgage application. To support SaaS customization and fulfill the various functional and quality requirements of individual tenants, a unified and innovative multi-layered customization framework is proposed to support and manage the variability of SaaS applications. To support scalable SaaS, a hybrid database design to support SaaS customization with two-layer database partitioning is proposed. To support secure SaaS, O-RBAC, an ontology based RBAC (Role based Access Control) model is used for Multi-Tenancy Architecture in clouds. To support a significant number of tenants, an easy to use SaaS construction framework is proposed. As a summary, this thesis discusses the most important research problems in cloud computing, towards effective and intelligent SaaS. The research in this thesis is critical to the development of cloud computing and provides fundamental solutions to those problems.
ContributorsShao, Qihong (Author) / Tsai, Wei-Tek (Thesis advisor) / Askin, Ronald (Committee member) / Ye, Jieping (Committee member) / Naphade, Milind (Committee member) / Arizona State University (Publisher)
Created2011
157648-Thumbnail Image.png
Description
Conservation planning is fundamental to guarantee the survival of endangered species and to preserve the ecological values of some ecosystems. Planning land acquisitions increasingly requires a landscape approach to mitigate the negative impacts of spatial threats such as urbanization, agricultural development, and climate change. In this context, landscape connectivity and

Conservation planning is fundamental to guarantee the survival of endangered species and to preserve the ecological values of some ecosystems. Planning land acquisitions increasingly requires a landscape approach to mitigate the negative impacts of spatial threats such as urbanization, agricultural development, and climate change. In this context, landscape connectivity and compactness are vital characteristics for the effective functionality of conservation reserves. Connectivity allows species to travel across landscapes, facilitating the flow of genes across populations from different protected areas. Compactness measures the spatial dispersion of protected sites, which can be used to mitigate risk factors associated with species leaving and re-entering the reserve. This research proposes an optimization model to identify areas to protect while enforcing connectivity and compactness. In the suggested projected area, this research builds upon existing methods and develops an alternative metric of compactness that penalizes the selection of patches of land with few protected neighbors. The new metric is referred as leaf because it intends to minimize the number of selected areas with 1 neighboring protected area. The model includes budget and minimum selected area constraints to reflect realistic financial and ecological requirements. Using a lexicographic approach, the model can improve the compactness of conservation reserves obtained by other methods. The use of the model is illustrated by solving instances of up to 1100 patches.
ContributorsRavishankar, Shreyas (Author) / Sefair, Jorge A (Thesis advisor) / Askin, Ronald (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2019
158541-Thumbnail Image.png
Description
Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium term capacity planning for manufacturing systems employ queueing network models based on stationary demand assumptions. However, these stationary demand assumptions

Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium term capacity planning for manufacturing systems employ queueing network models based on stationary demand assumptions. However, these stationary demand assumptions are not very practical for rapidly evolving supply chains. Nonstationary demand processes provide a reasonable framework to capture the time-varying nature of modern markets. The analysis of queues and queueing networks with time-varying parameters is mathematically intractable. In this dissertation, heuristics which draw upon existing steady state queueing results are proposed to provide computationally efficient approximations for dynamic multi-product manufacturing systems modeled as time-varying queueing networks with multiple customer classes (product types). This dissertation addresses the problem of performance evaluation of such manufacturing systems.

This dissertation considers the two key aspects of dynamic multi-product manufacturing systems - namely, performance evaluation and optimal server resource allocation. First, the performance evaluation of systems with infinite queueing room and a first-come first-serve service paradigm is considered. Second, systems with finite queueing room and priorities between product types are considered. Finally, the optimal server allocation problem is addressed in the context of dynamic multi-product manufacturing systems. The performance estimates developed in the earlier part of the dissertation are leveraged in a simulated annealing algorithm framework to obtain server resource allocations.
ContributorsJampani Hanumantha, Girish (Author) / Askin, Ronald (Thesis advisor) / Ju, Feng (Committee member) / Yan, Hao (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2020
158514-Thumbnail Image.png
Description
In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible cost. Designing an optimal supply chain by optimizing supply chain operations and decisions is key to achieving these goals.

In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible cost. Designing an optimal supply chain by optimizing supply chain operations and decisions is key to achieving these goals.

In this research, a capacity planning and production scheduling mathematical model for a multi-facility and multiple product supply chain network with significant capital and labor costs is first proposed. This model considers the key levers of capacity configuration at production plants namely, shifts, run rate, down periods, finished goods inventory management and overtime. It suggests a minimum cost plan for meeting medium range demand forecasts that indicates production and inventory levels at plants by time period, the associated manpower plan and outbound shipments over the planning horizon. This dissertation then investigates two model extensions: production flexibility and pricing. In the first extension, the cost and benefits of investing in production flexibility is studied. In the second extension, product pricing decisions are added to the model for demand shaping taking into account price elasticity of demand.





The research develops methodologies to optimize supply chain operations by determining the optimal capacity plan and optimal flows of products among facilities based on a nonlinear mixed integer programming formulation. For large size real life cases the problem is intractable. An alternate formulation and an iterative heuristic algorithm are proposed and tested. The performance and bounds for the heuristic are evaluated. A real life case study in the automotive industry is considered for the implementation of the proposed models. The implementation results illustrate that the proposed method provides valuable insights for assisting the decision making process in the supply chain and provides significant improvement over current practice.
ContributorsAlmatooq, Nourah (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Gel, Esma (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2020
161559-Thumbnail Image.png
Description
To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient

To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient flexibility and efficiency should be ensured so that future customer demand can be met at a profit. This dissertation is motivated by an automobile manufacturer's mid-term and long-term decision problems, but applies to any multi-plant, multi-product manufacturer with evolving product portfolios and significant fixed and variable production costs. Via introducing the concepts of effective capacity and product-specific flexibility, two mixed integer programming (MIP) models are proposed to help manufacturers shape their mid-term capacity plans and long-term product allocation plans. With fixed tooling flexibility, production and logistics considerations are integrated into a mid-term capacity planning model to develop well-informed and balanced tactical plans, which utilize various capacity adjustment options to coordinate production, inventory, and shipping schedules throughout the planning horizon so that overall operational and capacity adjustment costs are minimized. For long-term product allocation planning, strategic tooling configuration plans that empower the production of multi-generation products at minimal configuration and operational costs are established for all plants throughout the planning horizon considering product-specific commonality and compatibility. New product introductions and demand uncertainty over the planning horizon are incorporated. As a result, potential production sites for each product and corresponding process flexibility are determined. An efficient heuristic method is developed and shown to perform well in solution quality and computational requirements.
ContributorsYao, Xufeng (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Escobedo, Adolfo (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2021
161732-Thumbnail Image.png
Description
Computer vision and tracking has become an area of great interest for many reasons, including self-driving cars, identification of vehicles and drivers on roads, and security camera monitoring, all of which are expanding in the modern digital era. When working with practical systems that are constrained in multiple ways, such

Computer vision and tracking has become an area of great interest for many reasons, including self-driving cars, identification of vehicles and drivers on roads, and security camera monitoring, all of which are expanding in the modern digital era. When working with practical systems that are constrained in multiple ways, such as video quality or viewing angle, algorithms that work well theoretically can have a high error rate in practice. This thesis studies several ways in which that error can be minimized.This thesis describes an application in a practical system. This project is to detect, track and count people entering different lanes at an airport security checkpoint, using CCTV videos as a primary source. This thesis improves an existing algorithm that is not optimized for this particular problem and has a high error rate when comparing the algorithm counts with the true volume of users. The high error rate is caused by many people crowding into security lanes at the same time. The camera from which footage was captured is located at a poor angle, and thus many of the people occlude each other and cause the existing algorithm to miss people. One solution is to count only heads; since heads are smaller than a full body, they will occlude less, and in addition, since the camera is angled from above, the heads in back will appear higher and will not be occluded by people in front. One of the primary improvements to the algorithm is to combine both person detections and head detections to improve the accuracy. The proposed algorithm also improves the accuracy of detections. The existing algorithm used the COCO training dataset, which works well in scenarios where people are visible and not occluded. However, the available video quality in this project was not very good, with people often blocking each other from the camera’s view. Thus, a different training set was needed that could detect people even in poor-quality frames and with occlusion. The new training set is the first algorithmic improvement, and although occasionally performing worse, corrected the error by 7.25% on average.
ContributorsLarsen, Andrei (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161608-Thumbnail Image.png
Description
A production system is commonly restricted by time windows. For example, perishability is a major concern in food processing and requires products, such as yogurt, beer and meat, not to stay in buffer for long. Semiconductor manufacturing is faced with oxidation and moisture absorption issues, if a product in buffer

A production system is commonly restricted by time windows. For example, perishability is a major concern in food processing and requires products, such as yogurt, beer and meat, not to stay in buffer for long. Semiconductor manufacturing is faced with oxidation and moisture absorption issues, if a product in buffer is exposed to air for long. Machine reliability is a major source of uncertainty in production systems that causes residence time constraints to be unsatisfied, leading to potential product quality issues. Rapid advances in sensor technology and automation provide potentials to manage production in real time, but the system complexity, brought by residence time constraints, makes it difficult to optimize system performance while providing a guaranteed product quality. To contribute to this end, this dissertation is dedicated to modeling, analysis and control of production systems with constrained time windows. This study starts with a small-scale serial production line with two machines and one buffer. Even the simplest serial lines could have too large state space due to the consideration of residence time constraints. A Markov chain model is developed to approximately analyze its transient behavior with a high accuracy. An iterative learning algorithm is proposed to perform real-time control. The analysis of two-machine serial line contributes to the further analysis of more general and complex serial lines with multiple machines. Residence time constraints can be required in multiple stages. To deal with it, a two-machine-one-buffer subsystem isolated from a multi-stage serial production line is firstly analyzed and then acts as a building block to support the aggregation method for overall system performance. The proposed aggregation method substantially reduces the complexity of the problem while maintaining a high accuracy. A decomposition-based control approach is proposed to control a multi-stage serial production line. A production system is decomposed into small-scale subsystems, and an iterative aggregation procedure is then used to generate a production control policy. The decomposition-based control approach outperforms general-purpose reinforcement learning method by delivering significant system performance improvement and substantial reduction on computation overhead. Semiconductor assembly line is a typical production system, where products are restricted by time windows and production can be disrupted by machine failures. A production control problem of semiconductor assembly line is presented and studied, and thus total lot delay time and residence time constraint violation are minimized.
ContributorsWang, Feifan (Author) / Ju, Feng (Thesis advisor) / Askin, Ronald (Committee member) / Mirchandani, Pitu (Committee member) / Patel, Nital (Committee member) / Arizona State University (Publisher)
Created2021
151633-Thumbnail Image.png
Description
In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also

In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also involves mixed-product transshipments between DCs with multiple truck size selection and routing delivery to retailers. Optimally solving such an integrated problem is in general not easy due to its combinatorial nature, especially when transshipments and routing are involved. In order to find out a good solution effectively, a two-phase solution methodology is derived: Phase I solves an integer programming model which includes all the constraints in the original model except that the routings are simplified to direct shipments by using estimated routing cost parameters. Then Phase II model solves the lower level inventory routing problem for each opened DC and its assigned retailers. The accuracy of the estimated routing cost and the effectiveness of the two-phase solution methodology are evaluated, the computational performance is found to be promising. The problem is able to be heuristically solved within a reasonable time frame for a broad range of problem sizes (one hour for the instance of 200 retailers). In addition, a model is generated for a similar network design problem considering direct shipment and consolidation within the same product set opportunities. A genetic algorithm and a specific problem heuristic are designed, tested and compared on several realistic scenarios.
ContributorsXia, Mingjun (Author) / Askin, Ronald (Thesis advisor) / Mirchandani, Pitu (Committee member) / Zhang, Muhong (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2013
129203-Thumbnail Image.png
Description

In order to process a product in a semiconductor back-end facility, a machine needs to be qualified, first by having product-specific software installed and then running test wafers through it to verify that the machine is capable of performing the process correctly. In general, not all machines are qualified to

In order to process a product in a semiconductor back-end facility, a machine needs to be qualified, first by having product-specific software installed and then running test wafers through it to verify that the machine is capable of performing the process correctly. In general, not all machines are qualified to process all products due to the high machine qualification cost and tool set availability. The machine qualification decision affects future capacity allocation in the facility and subsequently affects daily production schedules. To balance the tradeoff between current machine qualification costs and future potential backorder costs due to not enough machines qualified with uncertain demand, a stochastic product–machine qualification optimization model is proposed in this article. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to show the necessity of the stochastic model and the performance of different solution methods.

ContributorsFu, Mengying (Author) / Askin, Ronald (Author) / Fowler, John (Author) / Zhang, Muhong (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-03