Matching Items (13)
135232-Thumbnail Image.png
Description
Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.
ContributorsWassef, Cyril Alexander (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in bioethics courses, different groups of students may experience identity conflicts or discomfort when learning about them. However, no previous studies

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in bioethics courses, different groups of students may experience identity conflicts or discomfort when learning about them. However, no previous studies have investigated the impact of undergraduate bioethics students’ experiences in bioethics courses on their opinions and comfort. To fill this gap in knowledge, we investigated undergraduate bioethics students’ attitudes about and comfort when learning abortion, gene editing, and physician assisted suicide, as well as how their gender, religious, and political identity influence their attitudes and changes in their attitudes after instruction. We found that religious students were less supportive of gene editing, abortion, and physician assisted suicide than nonreligious students, non-liberal students were less supportive of abortion and physician assisted suicide than liberal students, and women were less supportive of abortion than men. Additionally, we found that religious students were less comfortable than nonreligious students when learning about gene editing, abortion, and physician assisted suicide, and non-liberal students were less comfortable than liberal students when learning about abortion. When asked how their comfort could have been improved, those who felt that their peers or instructors could have done something to increase their comfort most commonly cited that including additional unbiased materials or incorporating materials and discussions that cover both sides of every controversial issue would have helped them to feel more comfortable when learning about gene editing, abortion, and physician assisted suicide. Finally, we found that students who were less comfortable learning about abortion and physician assisted suicide were less likely to participate in discussions regarding those topics. Our findings show that students in different groups not only tend to have different support for controversial topics like gene editing, abortion, and physician assisted suicide, but they also feel differentially comfortable when learning about them, which in turn impacts their participation. We hope that this work helps instructors to recognize the importance of their students’ comfort to their learning in bioethics courses, and from this study, they can take away the knowledge that students feel their comfort could be most improved by the incorporation of additional inclusive materials and course discussions regarding the controversial topics covered in the course.

ContributorsEdwards, Baylee Anne (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
165079-Thumbnail Image.png
Description
Students with disabilities are underrepresented and underserved in college science, technology, engineering and math (STEM) degrees. Disabled individuals comprise 26% of the U.S. population but only about 9% of the students enrolled in STEM undergraduate programs. Individuals with disabilities who do pursue STEM degrees report unique challenges within their programs,

Students with disabilities are underrepresented and underserved in college science, technology, engineering and math (STEM) degrees. Disabled individuals comprise 26% of the U.S. population but only about 9% of the students enrolled in STEM undergraduate programs. Individuals with disabilities who do pursue STEM degrees report unique challenges within their programs, including struggling to receive needed accommodations and experiencing discrimination from peers and instructors. However, there has been limited research on the extent to which disability characteristics affect their experiences in STEM. To address this gap in the literature, we surveyed over 700 undergraduates with disabilities enrolled in STEM majors across the U.S. and probed their sense of belonging in science, feelings of morale, perception of campus climate, experienced classroom stigma, responsiveness of disability resource offices, scientific self-efficacy, science identity, and science community values. Using linear regression, we will assess and present on outcomes related to students’ persistence in college, outcomes specific to students with disabilities, and outcomes specific to these students in STEM. The findings of this work can be used to inform recommendations to create more inclusive experiences in college STEM for students with disabilities.
ContributorsNorton, Jennifer (Author) / Cooper, Katelyn (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
187436-Thumbnail Image.png
Description
Course-based undergraduate research experiences (CUREs) are strategically designed to advance novel research and integrate future professionals into the scientific community by making relevant discoveries through iteration, communication, and collaboration. With Universities also expanding online undergraduate degree programs that incorporate students who are otherwise unable to attend college, there is a

Course-based undergraduate research experiences (CUREs) are strategically designed to advance novel research and integrate future professionals into the scientific community by making relevant discoveries through iteration, communication, and collaboration. With Universities also expanding online undergraduate degree programs that incorporate students who are otherwise unable to attend college, there is a demand for online asynchronous courses to train online students in authentic research, thereby leading to a more skilled, diverse, and inclusive workforce. In this case-study, a pilot CURE leveraging the data-intensive field of genomics was presented as an inclusive opportunity for asynchronous, online students to increase their research experience without having to commit to in person or extra-curricular assignments. This online CURE was designed to investigate the effects of trimming software on high-throughput sequencing data when analyzing sex differential gene expression. Project-based objectives were developed to asynchronously teach (1) the biology behind the research, (2) the coding needed to conduct the research, and (3) professional development tools to communicate research findings. Course effectiveness was evaluated qualitatively and quantitatively using weekly, open-response progress reports and an assessment administered before and after term completion. This pilot study exhibited that students can be successful in remote research experiences that incorporate channels for communication, bespoke and accessible learning materials, and open-response reports to monitor challenges and coping strategies. In this iteration, remote students demonstrated improved learning outcomes and self-reported improved confidence as researchers. In addition, students gained more realistic expectations to self-assess computational research skill-levels and self-identified adaptive coping strategies that are transferrable to future research projects. Overall, this framework for an online asynchronous CURE effectively taught students computational skills to conduct genomics research in addition to professional skills to transition to and thrive in the workforce.
ContributorsAlarid, Danielle Olga (Author) / Wilson, Melissa A (Thesis advisor) / Buetow, Kenneth (Committee member) / Cooper, Katelyn (Committee member) / Arizona State University (Publisher)
Created2023
Description

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
165066-Thumbnail Image.png
ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165067-Thumbnail Image.png
ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05