Matching Items (15)
135679-Thumbnail Image.png
Description
This project details the synthesis and analysis of five analogs of model compound NEt-4IB (6-[ethyl(4-isobutoxy-3-isopropylphenyl)amino]nicotinic acid), that target the retinoid-X-receptor (RXR). These molecules were synthesized by substituting, adding, or removing substituents in the nitrogen-containing ring of NEt-4IB. The parent compound is a RXR partial agonist and has proven to be

This project details the synthesis and analysis of five analogs of model compound NEt-4IB (6-[ethyl(4-isobutoxy-3-isopropylphenyl)amino]nicotinic acid), that target the retinoid-X-receptor (RXR). These molecules were synthesized by substituting, adding, or removing substituents in the nitrogen-containing ring of NEt-4IB. The parent compound is a RXR partial agonist and has proven to be effective in the treatment of type II diabetes without the unwanted side effects seen with full agonists. Many of the current drugs used to treat type II diabetes are accompanied by adverse effects including increased triglyceride levels, weight gain, and hypoglycemia. Biological evaluation with KK-Ay (obese diabetic) model mice indicates that NEt-4IB may even be more effective than current drugs on the market, like pioglitazone. As a result, it is predicted that due to such structural similarity, the analogs synthesized for this work will perform equally, if not better than, NEt-4IB.
ContributorsMaiorella, Emma Lauren (Author) / Wagner, Carl (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136012-Thumbnail Image.png
Description
Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.
ContributorsYang, Joanna (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Hibler, Elizabeth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136167-Thumbnail Image.png
Description
Bexarotene (Targretin®) is an FDA approved drug used to treat cutaneous T-cell lymphoma (CTCL), as well as off-label treatments for various cancers and neurodegenerative diseases. Previous research has indicated that bexarotene has a specific affinity for retinoid X receptors (RXR), which allows bexarotene to act as a ligand-activated-transcription factor

Bexarotene (Targretin®) is an FDA approved drug used to treat cutaneous T-cell lymphoma (CTCL), as well as off-label treatments for various cancers and neurodegenerative diseases. Previous research has indicated that bexarotene has a specific affinity for retinoid X receptors (RXR), which allows bexarotene to act as a ligand-activated-transcription factor and in return control cell differentiation and proliferation. Bexarotene targets RXR homodimerization to drive transcription of tumor suppressing genes; however, adverse reactions occur simultaneously when bound to other nuclear receptors. In this study, we used novel bexarotene analogs throughout 5 iterations synthesized in the laboratory of Dr. Wagner to test for their potency and ability to bind RXR. The aim of our study is to quantitatively measure RXR homodimerization driven by bexarotene analogs using a yeast two-hybrid system. Our results suggests there to be several compounds with higher protein activity than bexarotene, particularly in generations 3.0 and 5.0. This higher affinity for RXR homodimers may help scientists identify a compound that will minimize adverse effects and toxicity of bexarotene and serve as a better cancer treatment alternative.
ContributorsSeto, David Hua (Author) / Marshall, Pamela (Thesis director) / Wagner, Carl (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
Description
By studying organismal performance, one can gain insight regarding the evolutionary and developmental processes that shape the adult organism. Bite force is an important trait that can be linked to performance, and therefore survival, of the entire organism. In order for an animal to successfully feed upon its prey, the

By studying organismal performance, one can gain insight regarding the evolutionary and developmental processes that shape the adult organism. Bite force is an important trait that can be linked to performance, and therefore survival, of the entire organism. In order for an animal to successfully feed upon its prey, the components of the jaw, such as the skeleton and attached muscles, must be strong enough to withstand the forces required for capturing and then processing (masticating) the prey. Because sharks and skates have a fully cartilaginous skeleton, they theoretically bite off more than deemed biologically possible, these organisms, therefore, are excellent models for study when trying to understand bite performance. The goal was to measure the bite force of Leucoraja erinacea. Dissections were completed for 14 individuals, in order to expose the muscles beneath the skin. The muscles were then removed, and the mass was recorded. Calculations derived from the literature were used to determine total bite force. Linear regression was used to determine the relationship between bite force and size of the organism. The average maximum bite force of Leucoraja erinacea was determined to be roughly 23.3 Newtons (N). There was a positive relationship between bite force and size. This skate produces a much smaller bite force than many other organisms, providing insight into its ecological role in food webs. Many of the shells of commercially important prey were also much stronger than the bite forces estimated for these skates, suggesting that either the skates were not mature or large enough to feed on these prey, or, perhaps this species is unable to feed on these organisms entirely.
ContributorsBurke, Samantha Elaine (Author) / Ferry, Lara (Thesis director) / Wagner, Carl (Committee member) / School for the Science of Health Care Delivery (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
139859-Thumbnail Image.png
Description

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which retain similar levels of RXR agonism while reducing the undesirable effects incurred by bexarotene. This honors thesis outlines the steps taken to design and synthesize novel analogues of the selective retinoid-X-receptor (RXR) agonist 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). Corresponding NMR spectra indicates the successful construction of four novel compounds which are structurally similar to known, biologically-evaluated rexinoids that have induced fewer side effects while stimulating greater levels of RXR selectivity as compared to bexarotene. Future In vitro analyses of these four analogues coupled with the recognized efficacy of their parent compounds demonstrate the chemotherapeutic potential of structurally modified bexarotene analogues

ContributorsDavidson, Jesse Raymond (Author) / Wagner, Carl (Thesis director) / Ball, Rebecca (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133995-Thumbnail Image.png
Description
Cancer, a disease which affects many lives, has been the topic of interest for this research. Treatment options are often available to help lessen the effects of the disease and in regards to cutaneous T-cell lymphoma (CTCL), no cure currently exists. An FDA approved drug by the name of Bexarotene

Cancer, a disease which affects many lives, has been the topic of interest for this research. Treatment options are often available to help lessen the effects of the disease and in regards to cutaneous T-cell lymphoma (CTCL), no cure currently exists. An FDA approved drug by the name of Bexarotene has been developed to provide chemotherapeutic effects within CTCL. Bexarotene has also been used in trials of breast cancer, lung cancer, glioblastoma multiforme and various neurodegenerative diseases. Yet the medication often causes serious side effects including hyperthyroidism, raised triglyceride levels and cutaneous toxicity. The focus of this research is to synthesize a hydroxylated analog compound of Bexarotene in efforts to produce a molecule that provides better chemotherapeutic effects while also lessening the various side effects caused. Synthesis of the molecule followed various organic chemistry techniques and reactions to create the final product. Melting point analysis, NMR and other various characterization data helped to confirm the synthesis of the intended molecule. Preliminary bioassay data results of the analog compound showed similar potency to that of Bexarotene. Further testing, however, will be required to determine the full pharmacokinetic profile of the molecule. Future direction of the research focuses on both further testing of the hydroxylated analog as well synthesizing newer analog compounds to find a molecule that can provide the best effects within cutaneous T-cell lymphoma and the various other diseases as well.
ContributorsMinasian, Ani Christina (Author) / Wagner, Carl (Thesis director) / Marshall, Pamela (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134201-Thumbnail Image.png
Description
Triple-negative breast cancer (TNBC) is defined by the lack of three receptors (estrogen, progesterone, and HER2 receptors) and accounts for 12-17% of breast cancers. TNBC is an aggressive form of the disease associated with high rates of recurrence and mortality within five years. Inhibitor of Growth 4 (ING4)

Triple-negative breast cancer (TNBC) is defined by the lack of three receptors (estrogen, progesterone, and HER2 receptors) and accounts for 12-17% of breast cancers. TNBC is an aggressive form of the disease associated with high rates of recurrence and mortality within five years. Inhibitor of Growth 4 (ING4) is a gene deleted in 16.5% and downregulated in 34% of breast tumors. The correlation between ING4 deficiencies and advanced tumors and poor patient survival implicates its tumor suppressive function in breast cancer. Low ING4 expression has been correlated with NFκB activation in metastatic breast tumors. Moreover, ING4 has been shown to inhibit NFkB-mediated gene transcription in various cancers, suggesting that ING4 may suppress cancer by inhibiting NFkB activation. However, the contribution of ING4 deficiencies and NFkB activation to aggressive TNBC progression is currently not well understood. We investigated the role of ING4 in the MDAmb231 TNBC cell line by genetically engineering the cells to overexpress or delete ING4. Cell growth and sensitivity to the chemotherapeutic agent doxorubicin were evaluated between the ING4-modified cell lines with or without TNFα to activate NFκB. The results showed that cell growths were comparable between the vector controls and ING4 overexpressing or deleted cell lines. In addition, TNFα treatment did not alter the growths of all cell lines, indicating that ING4 with or without NFkB activation did not play a role in determining the growth rates of TNBC. However, ING4 overexpressing cells were 20-30% more sensitive to 10 μM doxorubicin treatment, whereas ING4-deleted cells were 20-50% more resistant, suggesting that ING4 may determine chemotherapy response in TNBC. These findings suggest that tumors with low levels of ING4 may be more resistant to chemotherapy, thus requiring higher dosage and/or additional chemotherapy in patient treatment. Unexpectedly, TNFα sensitized all cell lines to doxorubicin regardless of ING4 expression levels, suggesting a TNFα function outside of NFκB activation in increasing doxorubicin sensitivity. It implicates that TNFα treatment may increase chemotherapy response in TNBC patients.
ContributorsUngor, Ashley Jordyn (Author) / Capco, David (Thesis director) / Kim, Suwon (Committee member) / Compton, Carolyn (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
155733-Thumbnail Image.png
Description
Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity

Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity have focused on drugs that specifically target and inhibit protein products of the cancer’s aberrantly expressed genes. This method has proved difficult for some proteins because of structural challenges or mutations that confer resistance to therapy. One potential method of targeted therapy that circumvents these issues is the use of small molecules that stabilize DNA secondary structures called G-quadruplexes. G-quadruplexes are present in the promoter region of many potential oncogenes and have regulatory roles in their transcription. This study analyzes the therapeutic potential of the compound GQC-05 in AML. This compound was shown in vitro to bind and stabilize the regulatory G-quadruplex in the MYC oncogene, which is commonly misregulated in AML. Through qPCR and western blot analysis, a GQC-05 mediated downregulation of MYC mRNA and protein was observed in AML cell lines with high MYC expression. In addition, GQC-05 is able to reduce cell viability through induction of apoptosis in sensitive AML cell lines. Concurrent treatment of AML cell lines with GQC-05 and the MYC inhibitor (+)JQ1 showed an antagonistic effect, indicating potential competition in the silencing of MYC. However, GQC-05 is not able to reduce MYC expression significantly enough to induce apoptosis in less sensitive AML cell lines. This resistance may be due to the cells’ lack of dependence on other potential GQC-05 targets that may help upregulate MYC or stabilize its protein product. Three such genes identified by RNA-seq analysis of GQC-05 treated cells are NOTCH1, PIM1, and RHOU. These results indicate that the use of small molecules to target the MYC promoter G-quadruplex is a viable potential therapy for AML. They also support a novel mechanism for targeting other potentially key genetic drivers in AML and lay the groundwork for advances in treatment of other cancers driven by G-quadruplex regulated oncogenes.
ContributorsTurnidge, Megan (Author) / Lake, Douglas (Thesis advisor) / Kim, Suwon (Committee member) / Azorsa, David (Committee member) / Arizona State University (Publisher)
Created2017
Description

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application of novel analogs of Bexarotene (RXR agonist), MeTC7 (a new potent VDR antagonist), and vitamin D as possible therapeutics for cancer and Alzheimer’s disease.

ContributorsHong, Jennifer (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
189277-Thumbnail Image.png
Description
Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More

Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More recently bexarotene has shown promise to reverse neurodegeneration, improve cognition and decrease levels of amyloid- β in transgenic mice expressing familial Alzheimer’s disease (AD) mutations. Bexarotene is a high affinity ligand for the retinoid X receptor (RXR) that heterodimerizes with the liver- X- receptors (LXR) and with peroxisome proliferator-activated receptor-gamma (PPARϒ) to control cholesterol efflux, inflammation, and transcriptionally upregulates the production of apolipoprotein (ApoE) in the brain. Enhanced ApoE expression may promote clearance of soluble Aβ peptides from the brain and reduce Aβ plaques, thus resolving both amyloid pathology and cognitive deficits. The present study assessed the potential of bexarotene and a group of 62 novel rexinoids to bind and activate RXR using a series of biological assays and screening methods, including: 1) a mammalian two-hybrid system (M2H) and an 2) Retinoid X Receptor response element (RXRE)-mediated reporter assays in cultured human cells. Moreover, Liver X Receptor response element (LXRE)-mediated luciferase assays were performed to analyze the ability of the novel analogs to activate LXRE - directed transcription, and to induce ApoE messenger ribonucleic acid (mRNA) in U87 glial cells. Furthermore, the most potent analogs were analyzed via quantitative polymerase chain reaction (qPCR) to determine efficacy in modulating expression of two critical tumor suppressor genes, activating transcription factor 3 (ATF3) and early growth response 3 (EGR3). Results from these multiple assays indicate that the panel of RXR ligands contains compounds with a range of activities, with some analogs capable of binding to RXR with higher affinity than others, and in some cases upregulating ApoE expression to a greater extent than bexarotene. The data suggests that minor modifications to the bexarotene core chemical structure may yield novel analogs possessing an equal or greater capacity to activate RXR and may be useful as therapeutic agents against CTCL and Alzheimer’s disease.
ContributorsReshi, Sabeeha Mushtaq (Author) / Jurutka, Peter (Thesis advisor) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2023