Matching Items (3)

158103-Thumbnail Image.png

Global Optimization Using Piecewise Linear Approximation

Description

Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early

Global optimization (programming) has been attracting the attention of researchers for almost a century. Since linear programming (LP) and mixed integer linear programming (MILP) had been well studied in early stages, MILP methods and software tools had improved in their efficiency in the past few years. They are now fast and robust even for problems with millions of variables. Therefore, it is desirable to use MILP software to solve mixed integer nonlinear programming (MINLP) problems. For an MINLP problem to be solved by an MILP solver, its nonlinear functions must be transformed to linear ones. The most common method to do the transformation is the piecewise linear approximation (PLA). This dissertation will summarize the types of optimization and the most important tools and methods, and will discuss in depth the PLA tool. PLA will be done using nonuniform partitioning of the domain of the variables involved in the function that will be approximated. Also partial PLA models that approximate only parts of a complicated optimization problem will be introduced. Computational experiments will be done and the results will show that nonuniform partitioning and partial PLA can be beneficial.

Contributors

Agent

Created

Date Created
  • 2020

154089-Thumbnail Image.png

Swarming in bounded domains

Description

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynamical swarming solutions are found.

The Attraction-Repulsion Model set with a long-range attraction and short-range repulsion interaction potential typically stabilizes to a well-studied flock steady state solution. The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by

kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm. The fundamental refraction law provides a one-dimensional iterative map that allows for a prediction and analysis of the trajectory of the center of mass of a flock in a channel and a square domain.

The extension of the wall collisions to a scattering experiment is conducted by setting two identical flocks to collide. The two particle dynamics is studied analytically and shows a transition from scattering: diverging flocks to bound states in the form of oscillations or parallel motions. Numerical studies of collisions of flocks show the same transition where the bound states become either a single translating flock or a rotating (mill).

Contributors

Agent

Created

Date Created
  • 2015

157121-Thumbnail Image.png

Bayesian Inference Frameworks for Fluorescence Microscopy Data Analysis

Description

In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring

In this work, I present a Bayesian inference computational framework for the analysis of widefield microscopy data that addresses three challenges: (1) counting and localizing stationary fluorescent molecules; (2) inferring a spatially-dependent effective fluorescence profile that describes the spatially-varying rate at which fluorescent molecules emit subsequently-detected photons (due to different illumination intensities or different local environments); and (3) inferring the camera gain. My general theoretical framework utilizes the Bayesian nonparametric Gaussian and beta-Bernoulli processes with a Markov chain Monte Carlo sampling scheme, which I further specify and implement for Total Internal Reflection Fluorescence (TIRF) microscopy data, benchmarking the method on synthetic data. These three frameworks are self-contained, and can be used concurrently so that the fluorescence profile and emitter locations are both considered unknown and, under some conditions, learned simultaneously. The framework I present is flexible and may be adapted to accommodate the inference of other parameters, such as emission photophysical kinetics and the trajectories of moving molecules. My TIRF-specific implementation may find use in the study of structures on cell membranes, or in studying local sample properties that affect fluorescent molecule photon emission rates.

Contributors

Agent

Created

Date Created
  • 2019