Matching Items (29)
152362-Thumbnail Image.png
Description
Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. When these equations are organized into a cascade, it is demonstrated that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting that natural selection may have favored signaling cascades as a parsimonious solution to the problem of generating switch-like behavior in a noisy environment.
ContributorsYoung, Jonathan Trinity (Author) / Armbruster, Dieter (Thesis advisor) / Platte, Rodrigo (Committee member) / Nagy, John (Committee member) / Baer, Steven (Committee member) / Taylor, Jesse (Committee member) / Arizona State University (Publisher)
Created2013
154381-Thumbnail Image.png
Description
High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
ContributorsDenker, Dennis (Author) / Gelb, Anne (Thesis advisor) / Archibald, Richard (Committee member) / Armbruster, Dieter (Committee member) / Boggess, Albert (Committee member) / Platte, Rodrigo (Committee member) / Saders, Toby (Committee member) / Arizona State University (Publisher)
Created2016
157690-Thumbnail Image.png
Description
The main objective of mathematical modeling is to connect mathematics with other scientific fields. Developing predictable models help to understand the behavior of biological systems. By testing models, one can relate mathematics and real-world experiments. To validate predictions numerically, one has to compare them with experimental data sets. Mathematical modeling

The main objective of mathematical modeling is to connect mathematics with other scientific fields. Developing predictable models help to understand the behavior of biological systems. By testing models, one can relate mathematics and real-world experiments. To validate predictions numerically, one has to compare them with experimental data sets. Mathematical modeling can be split into two groups: microscopic and macroscopic models. Microscopic models described the motion of so-called agents (e.g. cells, ants) that interact with their surrounding neighbors. The interactions among these agents form at a large scale some special structures such as flocking and swarming. One of the key questions is to relate the particular interactions among agents with the overall emerging structures. Macroscopic models are precisely designed to describe the evolution of such large structures. They are usually given as partial differential equations describing the time evolution of a density distribution (instead of tracking each individual agent). For instance, reaction-diffusion equations are used to model glioma cells and are being used to predict tumor growth. This dissertation aims at developing such a framework to better understand the complex behavior of foraging ants and glioma cells.
ContributorsJamous, Sara Sami (Author) / Motsch, Sebastien (Thesis advisor) / Armbruster, Dieter (Committee member) / Camacho, Erika (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2019
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019
160805-Thumbnail Image.png
Description

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played

We attempt to analyze the effect of fatigue on free throw efficiency in the National Basketball Association (NBA) using play-by-play data from regular-season, regulation-length games in the 2016-2017, 2017-2018, and 2018-2019 seasons. Using both regression and tree-based statistical methods, we analyze the relationship between minutes played total and minutes played continuously at the time of free throw attempts on players' odds of making an attempt, while controlling for prior free throw shooting ability, longer-term fatigue, and other game factors. Our results offer strong evidence that short-term activity after periods of inactivity positively affects free throw efficiency, while longer-term fatigue has no effect.

ContributorsRisch, Oliver (Author) / Armbruster, Dieter (Thesis director) / Hahn, P. Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132157-Thumbnail Image.png
Description
The findings of this project show that through the use of principal component analysis and K-Means clustering, NBA players can be algorithmically classified in distinct clusters, representing a player archetype. Individual player data for the 2018-2019 regular season was collected for 150 players, and this included regular per game statistics,

The findings of this project show that through the use of principal component analysis and K-Means clustering, NBA players can be algorithmically classified in distinct clusters, representing a player archetype. Individual player data for the 2018-2019 regular season was collected for 150 players, and this included regular per game statistics, such as rebounds, assists, field goals, etc., and advanced statistics, such as usage percentage, win shares, and value over replacement players. The analysis was achieved using the statistical programming language R on the integrated development environment RStudio. The principal component analysis was computed first in order to produce a set of five principal components, which explain roughly 82.20% of the total variance within the player data. These five principal components were then used as the parameters the players were clustered against in the K-Means clustering algorithm implemented in R. It was determined that eight clusters would best represent the groupings of the players, and eight clusters were created with a unique set of players belonging to each one. Each cluster was analyzed based on the players making up the cluster and a player archetype was established to define each of the clusters. The reasoning behind the player archetypes given to each cluster was explained, providing details as to why the players were clustered together and the main data features that influenced the clustering results. Besides two of the clusters, the archetypes were proven to be independent of the player's position. The clustering results can be expanded on in the future to include a larger sample size of players, and it can be used to make inferences regarding NBA roster construction. The clustering can highlight key weaknesses in rosters and show which combinations of player archetypes lead to team success.
ContributorsElam, Mason Matthew (Author) / Armbruster, Dieter (Thesis director) / Gel, Esma (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among

We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles.

ContributorsHao, Yan (Author) / Armbruster, Dieter (Author) / Huett, Marc-Thorsten (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-01
127829-Thumbnail Image.png
Description

Capacity dimensioning in production systems is an important task within strategic and tactical production planning which impacts system cost and performance. Traditionally capacity demand at each worksystem is determined from standard operating processes and estimated production flow rates, accounting for a desired level of utilization or required throughput times. However,

Capacity dimensioning in production systems is an important task within strategic and tactical production planning which impacts system cost and performance. Traditionally capacity demand at each worksystem is determined from standard operating processes and estimated production flow rates, accounting for a desired level of utilization or required throughput times. However, for distributed production control systems, the flows across multiple possible production paths are not known a priori. In this contribution, we use methods from algorithmic game-theory and traffic-modeling to predict the flows, and hence capacity demand across worksystems, based on the available production paths and desired output rates, assuming non-cooperative agents with global information. We propose an iterative algorithm that converges simultaneously to a feasible capacity distribution and a flow distribution over multiple paths that satisfies Wardrop's first principle. We demonstrate our method on models of real-world production networks.

ContributorsBlunck, Henning (Author) / Armbruster, Dieter (Author) / Bendul, Julia (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
129446-Thumbnail Image.png
Description

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. Cascading these equations we demonstrate that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting the evolutionary benefit of the observed cascades.

ContributorsArmbruster, Dieter (Author) / Nagy, John (Author) / Young, Jon (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-21