Matching Items (17)
152058-Thumbnail Image.png
Description
There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the

There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the most limited water availability. Electricity trading is anticipated to be an important strategy for avoiding further local water stress, especially during drought and in the areas with the most rapidly growing populations. Transfers of electricity imply transfers of "virtual water" - water required for the production of a product. Yet, as a result of sizable demand growth, there may not be excess capacity in the system to support trade as an adaptive response to long lasting drought. As the grid inevitably expands capacity due to higher demand, or adapts to anticipated climate change, capacity additions should be selected and sited to increase system resilience to drought. This paper explores the tradeoff between virtual water and local water/energy infrastructure development for the purpose of enhancing the Western US power grid's resilience to drought. A simple linear model is developed that estimates the economically optimal configuration of the Western US power grid given water constraints. The model indicates that natural gas combined cycle power plants combined with increased interstate trade in power and virtual water provide the greatest opportunity for cost effective and water efficient grid expansion. Such expansion, as well as drought conditions, may shift and increase virtual water trade patterns, as states with ample water resources and a competitive advantage in developing power sources become net exporters, and states with limited water or higher costs become importers.
ContributorsHerron, Seth (Author) / Ruddell, Benjamin L (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Allenby, Braden (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2013
152334-Thumbnail Image.png
Description
This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy

This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy dissipation of the system is its fasteners (nails) which are not enough to dissipate energy leading to decreasing of structure's integrity. Moreover, wood shear walls could not sustain their stiffness after experiencing moderate wall drift which made them susceptible to strong aftershocks. Therefore, CarbonFlex shear wall system was proposed to be used in the wood-framed structures. Seven full-size CarbonFlex shear walls and a CarbonFlex wrapped structures were tested. The results were compared to those of conventional wood-framed shear walls and a wood structure. The comparisons indicated that CarbonFlex specimens could sustain their strength and fully recover their initial stiffness although they experienced four percent story drift while the stiffness of the conventional structure dramatically degraded. This indicated that CarbonFlex shear wall systems provided a better seismic protection to wood-framed structures. To evaluate capability of CarbonFlex to resist impact damages from wind-borne debris in tornadoes, several debris impact tests of CarbonFlex and a carbon fiber reinforced storm shelter's wall panels were conducted. The results showed that three CarbonFlex wall panels passed the test at the highest debris impact speed and the other two passed the test at the second highest speed while the carbon fiber panel failed both impact speeds.
ContributorsDhiradhamvit, Kittinan (Author) / Attard, Thomas L (Thesis advisor) / Fafitis, Apostolos (Thesis advisor) / Neithalath, Narayanan (Committee member) / Thomas, Benjamin (Committee member) / Arizona State University (Publisher)
Created2013
151085-Thumbnail Image.png
Description
The thesis examines how high density polyethylene (HDPE) pipe installed by horizontal directional drilling (HDD) and traditional open trench (OT) construction techniques behave differently in saturated soil conditions typical of river crossings. Design fundamentals for depth of cover are analogous between HDD and OT; however, how the product pipe is

The thesis examines how high density polyethylene (HDPE) pipe installed by horizontal directional drilling (HDD) and traditional open trench (OT) construction techniques behave differently in saturated soil conditions typical of river crossings. Design fundamentals for depth of cover are analogous between HDD and OT; however, how the product pipe is situated in the soil medium is vastly different. This distinction in pipe bedding can produce significant differences in the post installation phase. The research was inspired by several incidents involving plastic pipe installed beneath rivers by HDD where the pipeline penetrated the overburden soil and floated to the surface after installation. It was hypothesized that pipes installed by HDD have a larger effective volume due to the presence of low permeability bentonite based drilling fluids in the annular space on completion of the installation. This increased effective volume of the pipe increases the buoyant force of the pipe compared to the same product diameter installed by OT methods, especially in situations where the pipe is installed below the ground water table. To simulate these conditions, a real-scale experiment was constructed to model the behavior of buried pipelines submerged in saturated silty soils. A full factorial design was developed to analyze scenarios with pipe diameters of 50, 75, and 100 mm installed at varying depths in a silty soil simulating an alluvial deposition. Contrary to the experimental hypothesis, pipes installed by OT required a greater depth of cover to prevent pipe floatation than similarly sized pipe installed by HDD. The results suggested that pipes installed by HDD are better suited to survive changing depths of cover. In addition, finite element method (FEM) modeling was conducted to understand soil stress patterns in the soil overburden post-installation. Maximum soil stresses occurring in the soil overburden between post-OT and HDD installation scenarios were compared to understand the pattern of total soil stress incurred by the two construction methods. The results of the analysis showed that OT installation methods triggered a greater total soil stress than HDD installation methods. The annular space in HDD resulted in less soil stress occurring in the soil overburden. Furthermore, the diameter of the HDD annular space influenced the soil stress that occurred in the soil overburden, while the density of drilling fluids did not vastly affect soil stress variations. Thus, the diameter of the annular space could impact soil stress patterns in HDD installations post-construction. With these findings engineers and designers may plan, design, and construct more efficient river-crossing projects.
ContributorsCho, Chin-sŏng (Author) / Ariaratnam, Samuel (Thesis advisor) / Lueke, Jason (Thesis advisor) / Arizona State University (Publisher)
Created2012
150719-Thumbnail Image.png
Description
This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning requires simultaneous consideration of the three right of way infrastructure

This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning requires simultaneous consideration of the three right of way infrastructure components that are typically owned and operated under the same municipal umbrella: roads, sewer, and water. The traditional paradigm for the planning of right way asset management involves operating in silos where there is little collaboration amongst different utility departments in the planning of maintenance, rehabilitation, and renewal projects. By collaborating across utilities during the planning phase, savings can be achieved when collocated rehabilitation projects from different right of way infrastructure components are synchronized to occur at the same time. These savings are in the form of shared overhead and mobilization costs, and roadway projects providing open space for subsurface utilities. Individual component models and a holistic model that utilize evolutionary algorithms to optimize five year maintenance, rehabilitation, and renewal plans for the road, sewer, and water components were created and compared. The models were designed to be portable so that they could be used with any infrastructure condition rating, deterioration modeling, and criticality assessment systems that might already be in place with a municipality. The models attempt to minimize the overall component score, which is a function of the criticality and condition of the segments within each network, by prescribing asset management activities to different segments within a component network while subject to a constraining budget. The individual models were designed to represent the traditional decision making paradigm and were compared to the holistic model. In testing at three different budget levels, the holistic model outperformed the individual models in the ability to generate five year plans that optimized prescribed maintenance, rehabilitation and renewal for various segments in order to achieve the goal of improving the component score. The methodology also achieved the goal of being portable, in that it is compatible with any condition rating, deterioration, and criticality system.
ContributorsCarey, Brad David (Author) / Lueke, Jason S (Thesis advisor) / Ariaratnam, Samuel (Committee member) / Bashford, Howard (Committee member) / Arizona State University (Publisher)
Created2012
155970-Thumbnail Image.png
Description
This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success

This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success and how it has affected depending on the characteristics of the company. It was to examine the effectiveness of the recruitment and selection practices of entrants in the construction industry workforce and pathways to improve those practices.
ContributorsHatfield, Whitney (Author) / Ariaratnam, Samuel (Thesis advisor) / Chasey, Allan (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2017
156897-Thumbnail Image.png
Description
The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses were obtained from 75 utilities and constructors that either completed their projects using DBB, construction manager at risk (CMAR), or design-build (DB). Data analysis revealed that CMAR and DB statistically outperformed DBB in terms of project speed and intensity. Performance metrics such as cost growth, schedule growth, unit cost, factors influencing project delivery method selection, scope changes, warranty and latent defects, and several others are also evaluated. The main contribution of this study was that it was able to show that for the same project cost, water and wastewater treatment plants could be delivered under a faster schedule and with higher quality through the utilization of APDM.
ContributorsFeghaly, Jeffrey (Author) / El Asmar, Mounir (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2018
149457-Thumbnail Image.png
Description
Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This

Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This thesis describes a novel and effective risk management tool that has been developed by the Construction Industry Institute (CII) called the Project Definition Rating Index (PDRI) for infrastructure projects. Input from industry professionals from over 30 companies was used in the tool development which is specifically focused on FEP. Data from actual projects are given showing the efficacy of the tool. Critical success factors for FEP of infrastructure projects are shared. The research shows that a finite and specific list of issues related to scope definition of infrastructure projects can be developed. The thesis also concludes that the PDRI score indicates the current level of scope definition and corresponds to project performance. Infrastructure projects with low PDRI scores outperform projects with high PDRI scores.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / Badger, William (Committee member) / Ariaratnam, Samuel (Committee member) / Arizona State University (Publisher)
Created2010
Description
The Phoenix-Metro area currently has problems with its transportation systems. Over-crowded and congested freeways have slowed travel times within the area. Express bus transportation and the existence of "High Occupancy" lanes have failed to solve the congestion problem. The light rail system is limited to those within a certain distance

The Phoenix-Metro area currently has problems with its transportation systems. Over-crowded and congested freeways have slowed travel times within the area. Express bus transportation and the existence of "High Occupancy" lanes have failed to solve the congestion problem. The light rail system is limited to those within a certain distance from the line, and even the light rail is either too slow or too infrequent for a commuter to utilize it effectively. To add to the issue, Phoenix is continuing to expand outward instead of increasing population density within the city, therefore increasing the time it takes to travel to downtown Phoenix, which is the center of economic activity. The people of Phoenix and its surrounding areas are finding that driving themselves to work is just as cost-effective and less time consuming than taking public transportation. Phoenix needs a cost-effective solution to work in co- existence with improvements in local public transportation that will allow citizens to travel to their destination in just as much time, or less time, than travelling by personal vehicle.
ContributorsSerfilippi, Jon (Author) / Ariaratnam, Samuel (Thesis director) / Pendyala, Ram (Committee member) / Pembroke, Jim (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
187709-Thumbnail Image.png
Description
During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts

During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts and social costs; however, there are some obstacles that prevent the implementation and the realization of these alternatives.This research is conducted mainly to evaluate the environmental impacts of open-cut excavation vs. trenchless technology in Egypt, through two main methodologies. Firstly, a field survey that aims to measure knowledge of people working in the Egyptian construction industry of trenchless technology, and the harms caused from keeping utilizing open-cut for installing all kinds of underground utilities. In addition to investigating the reasons behind not relying on trenchless technology as a safe alternative for open-cut in Egypt. Furthermore, in order to compare the greenhouse gases emissions resulted from both open-cut vs trenchless technology, a real case study is applied quantifying the amounts of the resulted greenhouse gases from each method. The results show that greenhouse gases emissions generated from open-cut were extremely higher than that of horizontal directional drilling as a trenchless installation method.
ContributorsKhedr, Ahmed Mossad Saeed Hafez (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2023
168362-Thumbnail Image.png
Description
The fact that the lean construction approach, a project-based production management approach, is considered as a best practice in the construction industry and a key solution to alleviate the implications of various forms of waste on the construction projects performance in general, and the Lebanese ones in particular, motivates the

The fact that the lean construction approach, a project-based production management approach, is considered as a best practice in the construction industry and a key solution to alleviate the implications of various forms of waste on the construction projects performance in general, and the Lebanese ones in particular, motivates the author to conduct a study to evaluate it as a strategic option. For that to happen, a bibliographic analysis has been developed to serve the key project objective. The bibliographic analysis is expected to help construction professionals to deepen their knowledge in Lean philosophy and its applications in the construction industry. After developing a solid background of understanding of Lean Construction, a survey to collect information from construction companies within the Lebanese territory has been conducted, followed by analysis and interpretations of the findings to examine lean construction inside the Lebanese construction Industry; that has been achieved in terms of understanding and analyzing the suitability, acceptability, and applicability of lean construction principles, tools, and techniques by Lebanese construction firms. Performed Revision has been crowned with a detailed explanation of the lean construction approach accompanied with an applicable lean construction implementation guideline. Besides that, survey results showed a wide acceptance of most lean construction principles (namely, waste elimination and continuous improvement) by Lebanese construction professionals. It has been shown as well, that lean construction tools and techniques are applied by a major portion of the Lebanese construction firms due to the significant impact these tools and techniques have on the project quality, schedule, and cost. However, all analyzed results confirm one main conclusion, that a significant portion of the Lebanese construction industry lack that adequate knowledge and understanding of lean construction philosophy, which necessitates the development of “Lean Construction Education Programs” as a principal enabler for successful lean construction adoption. This paper has been developed mainly to guide Lebanese construction professionals, especially project and construction managers, towards understanding and adopting lean construction as a mean to deliver projects of value and to inform Lebanese construction industry leaders about the current state of lean construction inside the Lebanese construction Industry.
ContributorsMetlej, Kamal (Author) / Grau Torrent, David (Thesis advisor) / Ariaratnam, Samuel (Committee member) / Czerniawski, Thomas (Committee member) / Arizona State University (Publisher)
Created2021