Matching Items (58)
152129-Thumbnail Image.png
Description
The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with

The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with desired levels quality assurance envisioned to satisfy emerging regenerative medicine market needs. , As such, this study encompassed a more systematic, rational design of experiment (DOE) approach toward the identification of electrospinning process conditions responsible for the production of dextran-polyacrylic acid (DEX-PAA) nanoscaffolds with desired architectures and tissue engineering properties. The latter includes scaffold fiber diameter, pore size, porosity, and degree of crosslinking that together can provide a range of scaffold nanomechanical properties that closely mimics the cell microenvironment. The results obtained from this preliminary DOE study indicate that there exist electrospinning operation conditions capable of producing Dex-PAA nanoarchitecture having potential utility for regenerative medicine applications.
ContributorsEspinoza, Roberta (Author) / Pizziconi, Vincent (Thesis advisor) / Massia, Stephen (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2013
152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
ContributorsSeyedmadani, Kimia (Author) / Pizziconi, Vincent (Thesis advisor) / Towe, Bruce (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152914-Thumbnail Image.png
Description
The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under

The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under high temperature. After heat treatment, Scanning Electron Microscope (SEM) was used to observe the structures of these scaffolds. Fourier transform infrared spectroscopy (FTIR) was used to measure the cross-linking level of scaffold samples given different times of heat treatment by detecting and comparing the newly formed ester bonds. Single-walled carbon nanotubes (SWCNT) were added to enhance the mechanical properties of dextran-PAA scaffolds. Attachment of NIH-3T3 fibroblast cells to the scaffold and the response upon implantation into rabbit vaginal tissue were also evaluated to investigate the performance of SWCNT dextran-PAA scaffold. SEM was then used to characterize morphology of fibroblast cells and rabbit tissues. The results suggest that SWCNT could enhance cell attachment, distribution and spreading performance of dextran-PAA scaffold.
ContributorsLiu, Chongji (Author) / Massia, Stephen (Thesis advisor) / Pizziconi, Vincent (Committee member) / Pauken, Christine (Committee member) / Arizona State University (Publisher)
Created2014
150892-Thumbnail Image.png
Description
The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression. In this investigation, the use of an emerging chemotherapeutic anti-cancer

The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression. In this investigation, the use of an emerging chemotherapeutic anti-cancer drug molecule, HDACi, was used to enhance the polymer-mediated gene expression. HDACi are capable of inhibiting deacetylation activities of histones and other non-histone proteins in the cytoplasm and nucleus, as well as increase transcriptional activities necessary for gene expression. In a prior study, a parallel synthesis and screening of polymers yielded a lead cationic polymer with high DNA-binding properties, and even more attractive, high transgene expressions. Previous studies showed the use of this polymer in conjunction with cytoplasmic HDACi significantly enhanced gene expression in PC3-PSMA prostate cancer cells. This led to the basis for the investigation presented in this thesis, but to use nuclear HDACi to potentially achieve similar results. The HDACi, HDACi_A, was a previously discovered lead drug that had potential to significantly enhance luciferase expression in PC3-PSMA cells. The results of this study found that the 20:1 polymer:plasmid DNA weight ratio was effective with 1 uM and 2 uM HDACI_A concentrations, showing up to a 9-fold enhancement. This enhancement suggested that HDACi_A was effectively aiding transfection. While not an astounding enhancement, it is still interesting enough to investigate further. Cell viabilities need to be determined to supplement the results.
ContributorsLehrman, Jennifer (Author) / Rege, Kaushal (Thesis advisor) / Caplan, Michael (Committee member) / Pizziconi, Vincent (Committee member) / Arizona State University (Publisher)
Created2012
151130-Thumbnail Image.png
Description
Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this disease do not always guarantee the improvement of the condition

Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this disease do not always guarantee the improvement of the condition of the MS patient and there has not been an accurate mechanism to measure the effectiveness of the treatment due to inter-patient heterogeneity. The factors that count for varying the performance of MS patients include environmental setting, weather, psychological status, dressing style and more. Also, patients may react differently while examined at specially arranged setting and this may not be the same while he/she is at home. Hence, it becomes a major problem for MS patients that how effectively a treatment slows down the progress of the disease and gives a relief for the patient. This thesis is trying to build a reliable system to estimate how good a treatment is for MS patients. Here I study the kinematic variables such as velocity of walking, stride length, variability and so on to find and compare the variations of the patient after a treatment given by the doctor, and trace these parameters for some patients after the treatment effect subdued.
ContributorsYin, Siyang (Author) / He, Jiping (Thesis advisor) / Pizziconi, Vincent (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2012
149969-Thumbnail Image.png
Description
In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for

In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for breath analysis. The thermoelectric biosensors under investigation were constructed using a thermopile for transduction and four different materials for biorecognition. The analytes, acetone and ethanol, were evaluated under dry-air and humidified-air conditions. The biosensor response to acetone concentration was found to be both repeatable and linear, while the sensor response to ethanol presence was also found to be repeatable. The different biorecognition materials produced discernible thermoelectric responses that were characteristic for each analyte. The sensor output data is presented in this report. Additionally, the results were evaluated against a mathematical model for further analysis. Ultimately, a thermoelectric biosensor based upon adsorption chemistry was developed and characterized. Additional work is needed to characterize the physicochemical action mechanism.
ContributorsWilson, Kimberly (Author) / Guilbeau, Eric (Thesis advisor) / Pizziconi, Vincent (Thesis advisor) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
134180-Thumbnail Image.png
Description
This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running for roughly 40 minutes. The lesson plans were created to cover a myriad of scientific topics to account for varied student interest. The topics covered were plant biology, aerodynamics, zoology, geology, chemistry, physics, and astronomy. Each lesson was scaffolded to match the learning needs of the three age groups (5-6 year olds, 7-8 year olds, 9-11 year olds) and to encourage engagement. "Engagement" was measured by pre- and post-activity surveys approved by IRB. The surveys were in the form of statements where the children would totally agree, agree, be undecided, disagree, or totally disagree with it. To more accurately test engagement, the smiley face Likert scale was incorporated with the answer choices. After implementation of the intervention, two-tailed paired t-tests showed that student engagement significantly increased for the two lesson plans of Aerodynamics and Chemistry.
ContributorsHunt, Allison Rene (Co-author) / Belko, Sara (Co-author) / Merritt, Eileen (Thesis director) / Ankeny, Casey (Committee member) / Division of Teacher Preparation (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135321-Thumbnail Image.png
Description
The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels of musical professionalism in Western culture. In order to determine what these stereotypes might entail, several thousand social media and

The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels of musical professionalism in Western culture. In order to determine what these stereotypes might entail, several thousand social media and blog posts were analyzed, and direct quotations detailing the perceived stereotypical personality profiles for each of the four instruments were collected. From these, the three most commonly mentioned characteristics were isolated for each of the instrument groups as follows: female gender, femininity, and giggliness for flutists, intelligence, studiousness, and demographics (specifically being an Asian male) for clarinetists, quirkiness, eccentricity, and being seen as a misfit for oboists, and overconfidence, attention-seeking behavior, and coolness for saxophonists. From these traits, a survey was drafted which asked participating college-aged musicians various multiple choice, opinion scale, and short-answer questions that gathered how much they agree or disagree with each trait describing the instrument from which it was derived. Their responses were then analyzed to determine how much correlation existed between the researched characteristics and the opinions of modern musicians. From these results, it was determined that 75% of the traits that were isolated for a particular instrument were, in fact, recognized as being true in the survey data, demonstrating that the stereotypes do exist and seem to be widely recognizable across many age groups, locations, and levels of musical skill. Further, 89% of participants admitted that the instrument they play has a certain stereotype associated with it, but only 38% of people identify with that profile. Overall, it was concluded that stereotypes, which are overwhelmingly negative and gendered by nature, are indeed propagated, but musicians do not appear to want to identify with them, and they reflect a more archaic and immature sense that does not correlate to the trends observed in modern, professional music.
ContributorsAllison, Lauren Nicole (Author) / Bhattacharjya, Nilanjana (Thesis director) / Ankeny, Casey (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136633-Thumbnail Image.png
Description
Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define

Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define cancer genomes in patient samples. By isolating tumor cells from normal cells, and enriching distinct clonal populations, clinically relevant genomic aberrations that drive disease can be identified in patients in vivo. An in-depth analysis of clonal architecture and tumor heterogeneity was performed in a stage II chemoradiation-naïve breast cancer from a sixty-five year old patient. DAPI-based DNA content measurements and DNA content-based flow sorting was used to to isolate nuclei from distinct clonal populations of diploid and aneuploid tumor cells in surgical tumor samples. We combined DNA content-based flow cytometry and ploidy analysis with high-definition array comparative genomic hybridization (aCGH) and next-generation sequencing technologies to interrogate the genomes of multiple biopsies from the breast cancer. The detailed profiles of ploidy, copy number aberrations and mutations were used to recreate and map the lineages present within the tumor. The clonal analysis revealed driver events for tumor progression (a heterozygous germline BRCA2 mutation converted to homozygosity within the tumor by a copy number event and the constitutive activation of Notch and Akt signaling pathways. The highlighted approach has broad implications in the study of tumor heterogeneity by providing a unique ultra-high resolution of polyclonal tumors that can advance effective therapies and clinical management of patients with this disease.
ContributorsLaughlin, Brady Scott (Author) / Ankeny, Casey (Thesis director) / Barrett, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05