Matching Items (38)
151639-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is the sixth leading cause of death in the United States and the most common form of dementia. Its cause remains unknown, but it is known to involve two hallmark pathologies: Amyloid Beta plaques and neurofibrillary tangles (NFTs). Several proteins have been implicated in the formation of

Alzheimer's Disease (AD) is the sixth leading cause of death in the United States and the most common form of dementia. Its cause remains unknown, but it is known to involve two hallmark pathologies: Amyloid Beta plaques and neurofibrillary tangles (NFTs). Several proteins have been implicated in the formation of neurofibrillary tangles, including Tau and S100B. S100B is a dimeric protein that is typically found bound to Ca(II) or Zn(II). These experiments relate to the involvement of S100B in Alzheimer's Disease-related processes and the results suggest that future research of S100B is warranted. Zn(II)-S100B was found to increase the rate at which tau assembled into paired helical filaments, as well as affect the rate at which tubulin polymerized into microtubules and the morphology of SH-SY5Y neuroblastoma cells after 72 hours of incubation. Zn(II)-S100B also increased the firing rate of hippocampal neurons after 36 hours of incubation. Together, these results suggest several possibilities: Zn(II)-S100B may be a key part of the formation of paired helical filaments (PHFs) that subsequently form NFTs. Zn(II)-S100B may also be competing with tau to bind tubulin, which could lead to an instability of microtubules and subsequent cell death. This finding aligns with the neurodegeneration that is commonly seen in AD and which could be a result of this microtubule instability. Ultimately, these results suggest that S100B is likely involved in several AD-related processes, and if the goal is to find an efficient and effective therapeutic target for AD, the relationship between S100B, particularly Zn(II)-S100B, and tau needs to be further studied.
ContributorsNaegele, Hayley (Author) / Mcgregor, Wade C (Thesis advisor) / Baluch, Debra (Committee member) / Francisco, Wilson (Committee member) / Arizona State University (Publisher)
Created2013
153102-Thumbnail Image.png
Description
Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus

Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus allowing for interrogation of the redox protein of interest. PFE has proven a versatile tool that has been used to elucidate the properties of many technologically relevant redox proteins including hydrogenases, laccases, and glucose oxidase.

This dissertation is comprised of two parts: extension of PFE to a novel electrode material and application of PFE to the investigation of a new type of hydrogenase. In the first part, mesoporous antimony-doped tin oxide (ATO) is employed for the first time as an electrode material for protein film electrochemistry. Taking advantage of the excellent optical transparency of ATO, spectroelectrochemistry of cytochrome c is demonstrated. The electrochemical and spectroscopic properties of the protein are analogous to those measured for the native protein in solution, and the immobilized protein is stable for weeks at high loadings. In the second part, PFE is used to characterize the catalytic properties of the soluble hydrogenase I from Pyrococcus furiosus (PfSHI). Since this protein is highly thermostable, the temperature dependence of catalytic properties was investigated. I show that the preference of the enzyme for reduction of protons (as opposed to oxidation of hydrogen) and the reactions with oxygen are highly dependent on temperature, and the enzyme is tolerant to oxygen during both oxidative and reductive catalysis.
ContributorsKwan, Patrick Karchung (Author) / Jones, Anne K (Thesis advisor) / Francisco, Wilson (Committee member) / Moore, Thomas (Committee member) / Arizona State University (Publisher)
Created2014
135555-Thumbnail Image.png
Description
Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to

Species survive by adapting to what is demanded by their environment. In constant and fluctuating environments, specialist and generalists should be favored, respectively. However, the costs and benefits of adaptation can depend on a variety of factors that alter the intensity of the specialist-generalist trade-off. We examined flight performance to determine how well flies that evolved in constant and fluctuating temperatures acclimated to hot and cold temperatures. We predicted that flies would perform best at temperatures most similar to the ones the flies evolved at. Best performance was found when rearing and testing temperatures aligned with the temperature at which a genotype had evolved, with the generalist sharing the best and worst performance combination with the constant thermally evolved flies. Interestingly, evolved and reared temperatures had equal impact on flight performance. It was also observed that rearing at 25°C resulted in flies with the best fitness. These results contribute to the specialist-generalist theory and the idea that long term cold development is restricting in terms of range for thermal performance.
ContributorsLe Vinh Thuy, Jacqueline (Author) / Angilletta, Michael (Thesis director) / VandenBrooks, John (Committee member) / Czarnoleski, Marcin (Committee member) / School of Molecular Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
136301-Thumbnail Image.png
Description
In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live in the city but depend on urban resources to thrive. It is hypothesized that urban exploiters may succeed in part

In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live in the city but depend on urban resources to thrive. It is hypothesized that urban exploiters may succeed in part due to phenotypic plasticity, in which organisms rapidly adjust their physiology or behavior to adapt to novel environmental contexts. In the city, it may be adaptive to display thermal plasticity, as the urban heat island effect caused by concrete and asphalt infrastructure prevents cooling at night. In this study, we observed the decorated cricket Gryllodes sigillatus, an invasive urban exploiter found in metropolitan Phoenix, in two separate experiments. We hypothesized that heat tolerance and activity are both plastic traits in this species. In Experiment 1, we predicted that knock-down time, a measure of heat tolerance, would be negatively affected by acclimation to a laboratory environment. Our results suggest that heat tolerance is affected by recent thermal regimes and that laboratory acclimation decreases knock-down time. In Experiment 2, we predicted that activity would increase with temperature until a point of extreme heat, at which point activity would decline. Statistical analysis for the second experiment reveals that activity decreases at 33°C, a natural urban extreme. This suggests either that 33°C is a thermal limit to physiology or that G. sigillatus is able to alter its behavior to exploit local thermal heterogeneity.
ContributorsVannan, Annika (Author) / Johnson, James Chadwick (Thesis director) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
136395-Thumbnail Image.png
Description
We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males and females both responded similarly to thermal treatments in average wing and cell size. The resulting cell area for a given wing size in thermal fluctuating populations remains unclear and remains a subject for future research.
ContributorsAdrian, Gregory John (Author) / Angilletta, Michael (Thesis director) / Harrison, Jon (Committee member) / Rusch, Travis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136156-Thumbnail Image.png
Description
Regular instances of employee and petty theft seem to suggest that stealing is common. Certain situations make stealing an advantageous opportunity, and studies show that most people will steal under the right conditions. However, these "right conditions" vary widely among individuals and are a combination of biological, social, psychological, and

Regular instances of employee and petty theft seem to suggest that stealing is common. Certain situations make stealing an advantageous opportunity, and studies show that most people will steal under the right conditions. However, these "right conditions" vary widely among individuals and are a combination of biological, social, psychological, and situational factors. In an attempt to better understand the rationality of stealing, our research team applied evolutionary psychology principles to a social experiment involving gift card theft. To find trends in how people will steal when given the opportunity, we attempted to create these "right conditions" (which we believed would encourage theft by minimizing cost) so that we could measure how a random sample of subjects (male students on the Tempe campus of Arizona State University) responded to variation in benefit. We predicted that if the cost was kept low, and if some gift cards conferred greater advantages than others (by possession greater value or utility), then the more advantageous gift cards would be stolen at a higher frequency from the sample pool than less advantageous ones. The results show that our assumptions were wrong. Theft almost never occurred and the few cards that were stolen were not the more "rational" choices as predicted. The experimental design indicates a flawed understanding of how the subjects weighed the benefits and costs of stealing gift cards. One major issue is that we failed to consider pro-social behavior as the norm. We also neglected the evolutionary benefits of cooperative behavior while overemphasizing the evolutionary benefits of theft. A more thorough and nuanced examination of the literature must be performed to avoid these fundamental flaws in the experiment in the future. The experiment also suffered from issues which might have inadvertently discouraged theft including the location, population, presence of other students, and time given to contemplate theft. If we wish to truly examine trends in theft to see if there is a trend towards the rational theft model we proposed, we must work with a population in which individuals already have a propensity to steal, the benefit is sufficiently high, and social pressures to be cooperative are low.
ContributorsKumar, Davina Sangitha (Author) / Angilletta, Michael (Thesis director) / Neuberg, Steven (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133928-Thumbnail Image.png
Description
Water-balance is a critical but understudied consideration for animals reproducing in dry environments, as females invest a significant amount of water into their offspring. What makes water especially challenging, is that few animals are known to have true water storage, whereas energy as fat storage is well-documented. Recent studies have

Water-balance is a critical but understudied consideration for animals reproducing in dry environments, as females invest a significant amount of water into their offspring. What makes water especially challenging, is that few animals are known to have true water storage, whereas energy as fat storage is well-documented. Recent studies have suggested the possibility that, when drinking water is scarce, animals can catabolize their muscles, thereby extracting cellular water. In this study, the aim was to show this as a potential method used by animals reproducing in dry environments to cope with dehydration and still produce a clutch. Children's pythons (Antaresia childreni) were used to investigate this phenomenon due to the fact that they experience two, distinctive, reproductive phases- vitellogenesis (when protein and energy are mobilized and invested into the yolk) and gravidity (when the major water investment into the egg occurs, as well as egg shelling). Other factors that make them excellent candidates are that they are pure capital breeders (don't eat during the reproductive season) and can withstand periods of water deprivation that far outlast their reproductive gravid phase. Reproductive and non-reproductive females were deprived of water for the duration of gravidity, and their mass decrease, epaxial muscle shrinkage, blood osmolality, total protein, uric acid, triglycerides and ketones were measured at the onset of each reproductive stage; these values were compared to their water-provided counterparts. Water-deprived females experienced greater mass loss, epaxial muscle loss, blood plasma osmolality, and uric acid than water-provided females. These findings suggest that muscle catabolism is used as a method of dealing with water-deprivation during gravidity.
ContributorsKaminsky, Brittany Michele (Author) / DeNardo, Dale (Thesis director) / Angilletta, Michael (Committee member) / Brusch, George (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137220-Thumbnail Image.png
Description
In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month

In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month reviews. Ultimately, both petitions were denied and the pika was not given protection under the Endangered Species Act (ESA). During the petitioning years, 2007 through 2013, there were many newspaper publications, press releases, and blog entries supporting the listing of the pika. Information published by these media ranged from misleading, to scientifically inaccurate. The public was swayed by these publications, and showed their support for listing the pika during the public comment period throughout the 12-month status review in California. While the majority of the public comments were in favor of listing the pika, there were a few letters that criticized the CBD for making a poster child out of a "cute" species. During the 12-month status review, the CDFW contacted pika experts and evaluated scientific literature to gain an understanding of the American pika's status. Seven years after the original petition, the CDFW denied listing the pika on the grounds that the species is not expected to become extinct in the next few decades. This case serves as an example where a prominent organization, the CBD, petitions to list a species that does not warrant protection. Their goal of making the pika the face of climate change failed when species was examined.
ContributorsBasso, Samantha Joy (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05