Matching Items (27)
150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
ContributorsMorrison, Brian (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Shovkovy, Igor (Committee member) / Davies, Paul (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2011
149994-Thumbnail Image.png
Description
A distinct characteristic of ferroelectric materials is the existence of a reversible spontaneous polarization with the application of an electric field. The relevant properties ferroelectric lithium niobate surfaces include a low density of defects and external screening of the bound polarization charge. These properties result in unique surface electric field

A distinct characteristic of ferroelectric materials is the existence of a reversible spontaneous polarization with the application of an electric field. The relevant properties ferroelectric lithium niobate surfaces include a low density of defects and external screening of the bound polarization charge. These properties result in unique surface electric field distribution with a strong electric field in the vicinity of domain boundaries, while away from the boundaries, the field decreases rapidly. In this work, ferroelectric lithium niobate (LN) is used as a template to direct the assembly of metallic nanostructures via photo-induced reduction and a substrate for deposition of ZnO semiconducting thin films via plasma enhanced atomic layer deposition (PE-ALD). To understand the mechanism the photo-induced deposition process the following effects were considered: the illumination photon energy and intensity, the polarization screening mechanism of the lithium niobate template and the chemical concentration. Depending on the UV wavelength, variation of Ag deposition rate and boundary nanowire formation are observed and attributed to the unique surface electric field distribution of the polarity patterned template and the penetration depth of UV light. Oxygen implantation is employed to transition the surface from external screening to internal screening, which results in depressed boundary nanowire formation. The ratio of the photon flux and Ag ion flux to the surface determine the deposition pattern. Domain boundary deposition is enhanced with a high photon/Ag ion flux ratio while domain boundary deposition is depressed with a low photon/Ag ion flux ratio. These results also support the photo-induced deposition model where the process is limited by carrier generation, and the cation reduction occurs at the surface. These findings will provide a foundational understanding to employ ferroelectric templates for assembly and patterning of inorganic, organic, biological, and integrated structures. ZnO films deposited on positive and negative domain surfaces of LN demonstrate different I-V curve behavior at different temperatures. At room temperature, ZnO deposited on positive domains exhibits almost two orders of magnitude greater conductance than on negative domains. The conductance of ZnO on positive domains decreases with increasing temperature while the conductance of ZnO on negative domains increases with increasing temperature. The observations are interpreted in terms of the downward or upward band bending at the ZnO/LN interface which is induced by the ferroelectric polarization charge. Possible application of this effect in non-volatile memory devices is proposed for future work.
ContributorsSun, Yang (Author) / Nemanich, Robert (Thesis advisor) / Bennett, Peter (Committee member) / Sukharev, Maxim (Committee member) / Ros, Robert (Committee member) / McCartney, Martha (Committee member) / Arizona State University (Publisher)
Created2011
136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136997-Thumbnail Image.png
Description
In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was

In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was placed in the path of one of the beams. The slide could then be rotated through a series of angles, and, from the resulting changes in the interference pattern, the index of refraction of the slide could be extracted. The index of refraction was found to be 1.5±0.02.
ContributorsSwenson, Jordan (Author) / Sukharev, Maxim (Thesis director) / Bennett, Peter (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2014-05
133498-Thumbnail Image.png
Description
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the

A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolve the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 1575 MeV with polar angle values of cos(theta) between -0.8 and 0.9 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting neutron yields from gamma p -> pi^+ n over azimuthal scattering angle, the observables \H and P have been extracted. These observables manifest as azimuthal modulations in the yields for the double-polarization experiment. Preliminary results for these observables will be presented and compared with predictions provided by the SAID Partial-Wave Analysis Facility.
ContributorsLee, Robert John (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133977-Thumbnail Image.png
Description
Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to a background of Drude-dispersive medium. The purpose of this CPML is to terminate the virtual grid of scattering simulations by

Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to a background of Drude-dispersive medium. The purpose of this CPML is to terminate the virtual grid of scattering simulations by absorbing all outgoing radiation. In this thesis, we exposit the method of simulation, establish the Perfectly-Matched Layer as a domain which houses a spatial-coordinate transform to the complex plane, construct the CPML in vacuum, adapt the CPML to the Drude medium, and conclude with tests of the adapted CPML for two different scattering geometries.
ContributorsThornton, Brandon Maverick (Author) / Sukharev, Maxim (Thesis director) / Goodnick, Stephen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The importance of lasing cannot be overstated – from improving medicine through surgery uses and industry through laser cutting and micro-wielding (just to name a few), to the development of laser cooling to isolate the first Bose-Einstein condensate in 1995. Not only do the technological benefits encourage research but, as

The importance of lasing cannot be overstated – from improving medicine through surgery uses and industry through laser cutting and micro-wielding (just to name a few), to the development of laser cooling to isolate the first Bose-Einstein condensate in 1995. Not only do the technological benefits encourage research but, as could probably be deduced, lasers are expensive devices. From Ruby crystals to Rubidium gasses, the materials required to construct lasers can be rare and highly specialized. Since the advancement of computer technology, computational physics has proved exceedingly useful. As a combination of both theoretical and experimental physcis, computational physics proves itself invaluable for allowing the testing of various theories and running of experiments in a time efficient and far less expensive way. For the purpose of this paper, having a clear understanding of the computational lasing system allows for simulations that are incredibly expensive or might not even be possible yet, to be conducted and the groundwork to be laid for future theory, experiment, or product.
The response of a molecular sheet with varying densities of simple, two-level system without lasing due to an ultra-short, wideband pulse centered at 2 eV is first investigated. The Fabry-Pérot modes rising from interference are observed, as well as the expected redshift in the transmission and reflection frequencies in the thin molecular sheet regime. Cautions regarding numerical instability and implementation of the Fast Fourier Transform are discussed. Upon activating the lasing levels of the molecules (creating a four-level system), the transmission and refection responses are measured for four combinations of molecular density and molecular sheet thickness. Lasing threshold and saturation phenomenon are observed and a clear lasing region is seen in the Power input/output analysis.
Population inversion is driving force that triggers lasing through stimulated emission. To investigate this, the populations of each of the four molecular energies levels are tracked for the same combinations of parameters in the previous tests. The population inversions and the threshold/saturation phenomena do not correspond to within reasonable limits. Inspection of the population data reveals a highly varied distribution within the molecular, suggesting that the system does not reach steady-state, and therefore and alternate method of analysis will need to be developed.
Having experimented with the simulations above, both the development of appropriate population analysis framework and the investigation of higher order dimensions (2-D and 3-D) will be pursed.
ContributorsBrewer, Andre (Author) / Sukharev, Maxim (Thesis director) / Treacy, Michael (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
154451-Thumbnail Image.png
Description
A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a

A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a butanol target and a circularly-polarized incident tagged photon beam with

energies between 0.62 and 2.93 GeV. Data are presented for the F and T polarization observables

for h meson photoproduction on the proton from W = 1.55 GeV to 1.80 GeV.

The data presented here will improve the world database and refine theoretical approaches

of nucleon structure.
ContributorsTucker, Ross (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2016
155056-Thumbnail Image.png
Description
The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling between a sinusoidal grating and two-level quantum emitters. A system consisting of metallic v-grooves and two-level emitters is thoroughly explored

The interaction of light with nanoscale structures consisting of metal and two-level quantum emitters is investigated computationally. A method of tilting the incoming electromagnetic wave is used to demonstrate coupling between a sinusoidal grating and two-level quantum emitters. A system consisting of metallic v-grooves and two-level emitters is thoroughly explored in the linear regime, where the spatially uniform fields provide a unique means of characterizing the coupling between the v-grooves and emitters. Furthermore, subwavelength spatial effects in the ground state population of emitters in the v-grooves are observed and analyzed in the non-linear regime. Finally, photon echoes are explored in the case of a one-dimensional ensemble of interacting two-level emitters as well as two-level emitters coupled to metallic slits, demonstrating the influence of collective effects on the echo amplitude in the former and the modifcation of the photon echo due to interaction with surface plasmons on the slits in the latter.
ContributorsBlake, Adam H (Author) / Sukharev, Maxim (Thesis advisor) / Treacy, Mike (Committee member) / Shovkovy, Igor (Committee member) / Drucker, Jeff (Committee member) / Arizona State University (Publisher)
Created2016
155397-Thumbnail Image.png
Description
The study of subwavelength behavior of light and nanoscale lasing has broad

potential applications in various forms of computation i.e. optical and quantum, as well as

in energy engineering. Although this field has been under active research, there has been

little work done on describing the behaviors of threshold and

The study of subwavelength behavior of light and nanoscale lasing has broad

potential applications in various forms of computation i.e. optical and quantum, as well as

in energy engineering. Although this field has been under active research, there has been

little work done on describing the behaviors of threshold and saturation. Particularly, how

the gain-molecule behavior affects the lasing behavior has yet to be investigated.

In this work, the interaction of surface-plasmon-polaritons (SPPs) and molecules is

observed in lasing. Various phenomenologies are observed related to the appearance of the

threshold and saturation regions. The lasing profile, as a visual delimiter of lasing threshold

and saturation, is introduced and used to study various parametrical dependencies of lasing,

including the number-density of molecules, the molecular thickness and the frequency

detuning between the molecular transition frequency and the SPP resonant frequency. The

molecular population distributions are studied in terminal and dynamical methods and are

found to contain unexpected and theoretically challenging properties. Using an average

dynamical analysis, the simulated spontaneous emission cascade can be clearly seen.

Finally, theoretical derivations of simple 1D strands of dipoles are presented in both

the exact and mean-field approximation, within the density matrix formalism. Some

preliminary findings are presented, detailing the observed behaviors of some simple

systems.
ContributorsBrewer, Andre J (Author) / Sukharev, Maxim (Thesis advisor) / Rivera, Daniel E (Thesis advisor) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2017