Matching Items (14)

156030-Thumbnail Image.png

Genome-driven targeted cancer therapy

Description

Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations

Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation. Prenylation, a lipid modification, is required for small GTPases signaling cascades. Project 1 demonstrates that prenylation inhibition can specifically target cells harboring p53 mutation resulting in reduced tumor proliferation and migration. Mutating p53 is associated with Ras and RhoA activation and statin prevents this activity by inhibiting prenylation. Ras-related pathway genes were selected from the transcriptomic analysis for evaluating correlation to statin sensitivity. A gene signature of seventeen genes and TP53 genotype (referred to as MPR signature) is generated to predict response to statins. MPR signature is validated through two datasets of drug screening in cell lines. As advancements in targeted gene modification are rising, the CRISPR-Cas9 technology has emerged as a new cancer therapeutic strategy. One of the important risk factors in gene therapy is the immune recognition of the exogenous therapeutic tool, resulting in obstruction of treatment and possibly serious health consequences. Project 2 describes a method development that can potentially improve the safety and efficacy of gene-targeting proteins. A cohort of 155 healthy individuals was screened for pre-existing B cell and T cell immune response to the S. pyogenes Cas9 protein. We detected antibodies against Cas9 in more than 10% of the healthy population and identified two immunodominant T cell epitopes of this protein. A de-immunized Cas9 that maintains the wild-type functionality was engineered by mutating the identified T cell epitopes. The gene signature and method described here have the potential to improve strategies for genome-driven tumor targeting.

Contributors

Agent

Created

Date Created
  • 2017

158275-Thumbnail Image.png

Biomarker Discovery for Alzheimer’s Disease Using NAPPA and In Vivo Crystallization in Baculovirus-Infected Insect Cells for Structural Biology

Description

Proteins are a large collection of biomolecules that orchestrate the vital

cellular processes of life. The last decade has witnessed dramatic advances in the

field of proteomics, which broadly include characterizing the

Proteins are a large collection of biomolecules that orchestrate the vital

cellular processes of life. The last decade has witnessed dramatic advances in the

field of proteomics, which broadly include characterizing the composition, structure,

functions, interactions, and modifications of numerous proteins in biological systems,

and elucidating how the miscellaneous components collectively contribute to the

phenotypes associated with various disorders. Such large-scale proteomics studies

have steadily gained momentum with the evolution of diverse high-throughput

technologies. This work illustrates the development of novel high-throughput

proteomics platforms and their applications in translational and structural biology. In

Chapter 1, nucleic acid programmable protein arrays displaying the human

proteomes were applied to immunoprofiling of paired serum and cerebrospinal fluid

samples from patients with Alzheimer’s disease. This high-throughput

immunoproteomic approach allows us to investigate the global antibody responses

associated with Alzheimer’s disease and potentially identify the diagnostic

autoantibody biomarkers. In Chapter 2, a versatile proteomic pipeline based on the

baculovirus-insect cell expression system was established to enable high-throughput

gene cloning, protein production, in vivo crystallization and sample preparation for Xray diffraction. In conjunction with the advanced crystallography methods, this endto-end pipeline promises to substantially facilitate the protein structural

determination. In Chapter 3, modified nucleic acid programmable protein arrays

were developed and used for probing protein-protein interactions at the proteome

level. From the perspective of biomarker discovery, structural proteomics, and

protein interaction networks, this work demonstrated the power of high-throughput

proteomics technologies in myriad applications for proteome-scale structural,

functional, and biomedical research.

Contributors

Agent

Created

Date Created
  • 2020

157800-Thumbnail Image.png

Regulation and Function of IL-36γ in Genital HSV-2 Infection and Disease Pathogenesis

Description

An estimated 267 million women worldwide are HSV-2 seropositive, including roughly 20% of reproductive-aged American women. HSV-2 is a neurotropic virus that establishes a persistent, life-long infection that increases risk

An estimated 267 million women worldwide are HSV-2 seropositive, including roughly 20% of reproductive-aged American women. HSV-2 is a neurotropic virus that establishes a persistent, life-long infection that increases risk for STI acquisition in individuals. The vaginal epithelium represents a critical first line of defense against infection, and during acute infection, underlying immune mechanisms in the epithelium may be critical to protect against disease pathogenesis. The recently identified pro-inflammatory cytokine IL-36gamma has been shown to be expressed at mucosal epithelia, including the female reproductive tract (FRT) and may be an important factor in host defense. Although IL-36gamma has been shown to be induced in the FRT after exposure to microbial products, the contributions of IL-36gamma to host defense mechanisms in response to this clinically relevant STI pathogen are not well understood. This dissertation describes the regulation of IL-36gamma in the FRT and explores its contribution to the host response against genital HSV-2 infection.

To test the hypothesis that IL-36gamma is a key regulator of mucosal inflammation and immunity in the FRT, hormonal regulation of IL-36gamma in the FRT was investigated using estrogen- and progesterone-conditioned mice. From this preliminary study, it was shown that progesterone dampens IL36G expression relative to estrogen and may potentially increase susceptibility to infection. Next, the impact of IL-36gamma treatment on HSV-2 infection and replication in human 3-D vaginal epithelial cells was explored. In parallel, the impact of intravaginal IL-36gamma delivery on HSV-2 disease pathogenesis was evaluated using a lethal murine challenge model. IL-36gamma pre-treatment significantly limited HSV-2 replication in vitro and in vivo and was associated with transient neutrophil infiltration that corresponded with decreased disease severity and increased survival in mice. Last, the requirement for IL-36gamma in host defense was investigated utilizing IL-36gamma-/- mice in a lethal HSV-2 murine challenge model. Following infection, IL-36gamma-/- mice exhibited significantly impaired neutrophil recruitment, decreased overall survival time, and significantly increased viral neuroinvasion relative to wild type mice. Collectively, these data indicate that IL-36gamma is a crucial regulator of HSV-2-induced neutrophil infiltration and appears to function in a previously uncharacterized manner to limit viral neuroinvasion in genital HSV-2 disease pathogenesis.

Contributors

Agent

Created

Date Created
  • 2019

157007-Thumbnail Image.png

Circulating Biomarkers for Cancer Immunoprofiling

Description

Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is

Biomarkers find a wide variety of applications in oncology from risk assessment to diagnosis and predicting and monitoring recurrence and response to therapy. Developing clinically useful biomarkers for cancer is faced with several challenges, including cancer heterogeneity and factors related to assay development and biomarker performance. Circulating biomarkers offer a rapid, cost-effective, and minimally-invasive window to disease and are ideal for population-based screening. Circulating immune biomarkers are stable, measurable, and can betray the underlying antigen when present below detection levels or even no longer present. This dissertation aims to investigate potential circulating immune biomarkers with applications in cancer detection and novel therapies. Over 600,000 cancers each year are attributed to the human papillomavirus (HPV), including cervical, anogenital and oropharyngeal cancers. A key challenge in understanding HPV immunobiology and developing immune biomarkers is the diversity of HPV types and the need for multiplexed display of HPV antigens. In Project 1, nucleic acid programmable protein arrays displaying the proteomes of 12 HPV types were developed and used for serum immunoprofiling of women with cervical lesions or invasive cervical cancer. These arrays provide a valuable high-throughput tool for measuring the breadth, specificity, heterogeneity, and cross-reactivity of the serologic response to HPV. Project 2 investigates potential biomarkers of immunity to the bacterial CRISPR/Cas9 system that is currently in clinical trials for cancer. Pre-existing B cell and T cell immune responses to Cas9 were detected in humans and Cas9 was modified to eliminate immunodominant epitopes while preserving its function and specificity. This dissertation broadens our understanding of the immunobiology of cervical cancer and provides insights into the immune profiles that could serve as biomarkers of various applications in cancer.

Contributors

Agent

Created

Date Created
  • 2018

154028-Thumbnail Image.png

Caveolin-1: a potential biomarker of aggressive triple-negative breast cancer in African American women

Description

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed with the highly aggressive triple-negative breast cancer (TNBC) subtype. Even within the TNBC subtype, AA women have a worse clinical outcome compared to CA. Although multiple socio-economic and lifestyle factors may contribute to these observed health disparities, it is essential that the underlying biological differences between CA and AA TNBC are identified. In this study, gene expression profiling was performed on archived FFPE samples, obtained from CA and AA women diagnosed with early stage TNBC. Initial analysis revealed a pattern of differential expression in the AA cohort compared to CA. Further molecular characterization results showed that the AA cohort segregated into 3-TNBC molecular subtypes; Basal-like (BL2), Immunomodulatory (IM) and Mesenchymal (M). Gene expression analyses resulted in 190 differentially expressed genes between the AA and CA cohorts. Pathway enrichment analysis demonstrated that differentially expressed genes were over-represented in cytoskeletal remodeling, cell adhesion, tight junctions, and immune response in the AA TNBC -cohort. Furthermore, genes in the Wnt/β-catenin pathway were over-expressed. These results were validated using RT-qPCR on an independent cohort of FFPE samples from AA and CA women with early stage TNBC, and identified Caveolin-1 (CAV1) as being significantly expressed in the AA-TNBC cohort. Furthermore, CAV1 was shown to be highly expressed in a cell line panel of TNBC, in particular, those of the mesenchymal and basal-like molecular subtype. Finally, silencing of CAV1 expression by siRNA resulted in a significant decrease in proliferation in each of the TNBC cell lines. These observations suggest that CAV1 expression may contribute to the more aggressive phenotype observed in AA women diagnosed with TNBC.

Contributors

Agent

Created

Date Created
  • 2015

153561-Thumbnail Image.png

Cancer autoantibody biomarker discovery and validation using nucleic acid programmable protein array

Description

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to serve as early detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung adenocarcinoma. First, a method was developed to display proteins in both native and denatured conformation on protein array. This method adopted a novel protein tag technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The covalent attachment allowed these proteins to endure harsh treatment without getting dissociated from slide surface, which enabled the profiling of antibody responses against both conformational and linear epitopes. Next, a plasma screening protocol was optimized to significantly increase signal to noise ratio of protein array based AAb detection. Following this, the AAb responses in basal-like breast cancer were explored using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length human proteins in 45 cases and 45 controls. After verification in a large sample set (145 basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 13-AAb classifier was developed to differentiate patients from controls with a sensitivity of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to identify AAbs that distinguished lung cancer patients from computed-tomography positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 benign controls). In this study, two panels of AAbs were discovered that showed promising sensitivity and specificity. Six out of eight AAb targets were also found to have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These projects as a whole provide novel insights on the association between AAbs and cancer, as well as general B cell antigenicity against self-proteins.

Contributors

Agent

Created

Date Created
  • 2015

155948-Thumbnail Image.png

T-Cell Immunogenicity and Dysfunction in Cancer and Viral Diseases

Description

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective

CD8+ T-lymphocytes (CTLs) are central to the immunologic control of infections and are currently at the forefront of strategies that enhance immune based treatment of a variety of tumors. Effective T-cell based vaccines and immunotherapies fundamentally rely on the interaction of CTLs with peptide-human leukocyte antigen class I (HLA-I) complexes on the infected/malignant cell surface. However, how CTLs are able to respond to antigenic peptides with high specificity is largely unknown. Also unknown, are the different mechanisms underlying tumor immune evasion from CTL-mediated cytotoxicity. In this dissertation, I investigate the immunogenicity and dysfunction of CTLs for the development of novel T-cell therapies. Project 1 explores the biochemical hallmarks associated with HLA-I binding peptides that result in a CTL-immune response. The results reveal amino acid hydrophobicity of T-cell receptor (TCR) contact residues within immunogenic CTL-epitopes as a critical parameter for CTL-self
onself discrimination. Project 2 develops a bioinformatic and experimental methodology for the identification of CTL-epitopes from low frequency T-cells against tumor antigens and chronic viruses. This methodology is employed in Project 3 to identify novel immunogenic CTL-epitopes from human papillomavirus (HPV)-associated head and neck cancer patients. In Project 3, I further study the mechanisms of HPV-specific T-cell dysfunction, and I demonstrate that combination inhibition of Indoleamine 2, 3-dioxygenase (IDO-1) and programmed cell death protein (PD-1) can be a potential immunotherapy against HPV+ head and neck cancers. Lastly, in Project 4, I develop a single-cell assay for high-throughput identification of antigens targeted by CTLs from whole pathogenome libraries. Thus, this dissertation contributes to fundamental T-cell immunobiology by identifying rules of T-cell immunogenicity and dysfunction, as well as to translational immunology by identifying novel CTL-epitopes, and therapeutic targets for T-cell immunotherapy.

Contributors

Agent

Created

Date Created
  • 2017

154784-Thumbnail Image.png

The molecular mechanisms of thrombus growth and stability

Description

Thrombus (blood clot) formation is at the roots of hemostasis and pathological thrombosis. Although many studies have successfully elucidated the cellular and molecular mechanisms underlying thrombus formation, there is still

Thrombus (blood clot) formation is at the roots of hemostasis and pathological thrombosis. Although many studies have successfully elucidated the cellular and molecular mechanisms underlying thrombus formation, there is still a void in understanding the processes limiting thrombus growth beyond that needed for stabilization. As a hemostatic thrombus grows, its surface consisting primarily of platelets changes to that composed of fibrin, which mechanically stabilizes the thrombus. Formation of fibrin ceases after some time; however, it is unclear why this fibrin is non-thrombogenic. This is puzzling since fibrin is known to support strong integrin-mediated adhesion of both platelets and leukocytes in vitro. Therefore, it would be expected that the fibrin surface of hemostatic thrombi in the circulation also support accumulation of these cells and thus continuous thrombus growth or degradation. Nevertheless, many in vivo studies did not detect any accumulation of blood cells including platelets at the fibrin surfaces of thrombi. This finding suggests the existence of natural processes that modulate the adhesive properties of fibrin to ensure proper regulation of thrombus growth, stability and degradation. In this dissertation, I document and discuss the findings supporting the existence of anti-adhesive mechanisms and their physiological relevance in surface-mediated control of thrombus growth and stability. The studies discussed in my dissertation have the potential to establish a novel aspect of hemostasis. Furthermore, it may provide new insights into the intricate and dynamic interplay between the mechanisms underlying hemostatic balance, which is essential to understanding the dysfunction of this process during pathological conditions.

Contributors

Agent

Created

Date Created
  • 2016

158793-Thumbnail Image.png

CD8+ T Cell Receptor Characterization in HPV Associated Head and Neck Cancer

Description

The human papillomavirus (HPV) is a double-stranded DNA virus responsible for causing upwards of 80% of head and neck cancers in the oropharyngeal region. Current treatments, including surgery, chemotherapy, and/or

The human papillomavirus (HPV) is a double-stranded DNA virus responsible for causing upwards of 80% of head and neck cancers in the oropharyngeal region. Current treatments, including surgery, chemotherapy, and/or radiation, are aggressive and elicit toxic effects. HPV is a pathogen that expresses viral-specific oncogenic proteins that play a role in cancer progression. These proteins may serve as potential targets for immunotherapeutic applications. Engineered T cell receptor (TCR) therapy may be an advantageous approach for HPV-associated cancers. In TCR therapy, TCRs are modified to express a receptor that is specific to an immunogenic antigen (part of the virus/cancer capable of eliciting an immune response). Since HPV-associated oropharyngeal cancers typically express unique viral proteins, it is important to identify the TCRs capable of recognizing these proteins. Evidence supports that head and neck cancers typically experience high levels of immune cell infiltration and are subsequently associated with increased survival rates. Most of the immune cell infiltrations in HPV+ HNSCC are CD8+ T lymphocytes, drawing attention to their prospective use in cellular immunotherapies. While TCRs are highly specific, the TCR repertoire is extremely diverse; enabling the immune system to fight off numerous pathogens. In project 1, I review approaches to analyzing TCR diversity and explore the use of DNA origami in retrieving paired TCR sequences from a population. The results determine that DNA origami can be used within a monoclonal population but requires further optimization before being applied in a polyclonal setting. In project 2, I investigate HPV-specific T-cell dysfunction; I detect low frequency HPV-specific CD8+ T cells, determine that they are tumor specific, and show that HPV+HNSCC patients exhibit increased epitope-specific levels of CD8+T cell exhaustion. In project 3, I apply methods to expand and isolate TCRαβ sequences derived from donors stimulated with a previously identified HPV epitope. Single-cell analysis provide ten unique TCRαβ pairs with corresponding CDR3 sequences that may serve as therapeutic candidates. This thesis contributes to fundamental immunology by contributing to the knowledge of T cell dysfunction within HPV+HNSCC and further reveals TCR gene usage within an HPV stimulated population, thus identifying potential TCR pairs for adoptive cell therapies.

Contributors

Agent

Created

Date Created
  • 2020

152885-Thumbnail Image.png

The ketogenic diet in the treatment of malignant glioma: mechanistic effects on hypoxia and angiogenesis

Description

Patients with malignant brain tumors have a median survival of approximately 15 months following diagnosis, regardless of currently available treatments which include surgery followed by radiation and chemotherapy. Improvement in

Patients with malignant brain tumors have a median survival of approximately 15 months following diagnosis, regardless of currently available treatments which include surgery followed by radiation and chemotherapy. Improvement in the survival of brain cancer patients requires the design of new therapeutic modalities that take advantage of common phenotypes. One such phenotype is the metabolic dysregulation that is a hallmark of cancer cells. It has therefore been postulated that one approach to treating brain tumors may be by metabolic alteration such as that which occurs through the use of the ketogenic diet (KD). The KD is high-fat, low-carbohydrate diet that induces ketosis and has been utilized for the non-pharmacologic treatment of refractory epilepsy. It has been shown that this metabolic therapy enhances survival and potentiates standard therapy in mouse models of malignant gliomas, yet the anti-tumor mechanisms are not fully understood.

The current study reports that KetoCal® (KC; 4:1 fat:protein/carbohydrates), fed ad libitum, alters hypoxia, angiogenic, and inflammatory pathways in a mouse model of glioma. Tumors from animals maintained on KC showed reduced expression of the hypoxia marker carbonic anhydrase 9 (CA IX), a reduction in hypoxia inducible factor 1-alpha (HIF-1α) and decreased activation of nuclear factor kappa B (NF-κB). Animals maintained on KC also showed a reduction in expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased microvasculature in their tumors. Further, peritumoral edema was significantly reduced in animals fed the KC and protein analysis showed significantly altered expression of the tight junction protein zona occludens-1 (ZO-1) and the water channeling protein aquaporin-4 (AQP4), both of which have been implicated in malignant processes in glioma, including the formation of peritumoral edema in patients. Taken together the data suggests that KC alters multiple processes involved in malignant progression of gliomas. A greater understanding of the effects of the ketogenic diet as an adjuvant therapy will allow for a more rational approach to its clinical use.

Contributors

Agent

Created

Date Created
  • 2014