Matching Items (11)

157628-Thumbnail Image.png

I Can’t Stand Thinking Anymore: An Analysis of Directed Attention on Posture

Description

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The purpose of this dissertation is to understand the relationship between attention and posture when attention is directly or indirectly shifted away from posture. Using a dual-task paradigm, attention was shifted directly by instructing participants to prioritize the balance task (minimize sway in a unipedal stance) or prioritize the cognitive task (minimize errors in an auditory n-back task) and indirectly by changing the difficulty level of the cognitive task (0-back vs. 2-back task). Postural sway was assessed using sample entropy (SampEn), standard deviation, (SD) and sway path (SP) of trunk movements to measure the regularity, variability, and overall distance of sway travelled, respectively. Dual-task behavior was examined when participants were in a controlled (i.e., non-fatigued) state (Experiment 1), in a state of physical fatigue (Experiment 2), and in a state of mental fatigue (Experiment 3). Across all three experiments, indirectly shifting attention away from posture in the more difficult 2-back task induced less regularity (higher SampEn) and variability (smaller SD) in postural sway. Directly shifting attention away from posture, by prioritizing the cognitive task, induced less regularity (higher SampEn) and a longer path length (higher SP) in Experiment 1, however this effect was not significant for the fatigued participants in Experiments 2 and 3. Neither physical fatigue (Experiment 2) or mental fatigue (Experiment 3) negatively affected postural sway or cognitive performance. Overall, the findings from this dissertation contribute to the relationship between movement regularity and attention in posture, and that the postural behavior that emerges is sensitive to methods in which attention is manipulated (direct, indirect) and fatigue (physical, mental).

Contributors

Agent

Created

Date Created
  • 2019

155568-Thumbnail Image.png

The impact of coordination quality on coordination dynamics and team performance: when humans team with autonomy

Description

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.

Contributors

Agent

Created

Date Created
  • 2017

157958-Thumbnail Image.png

Movement kinematics and fractal properties in Fitts' law task

Description

Fractal analyses examine variability in a time series to look for temporal structure

or pattern that reveals the underlying processes of a complex system. Although fractal

property has been found in many

Fractal analyses examine variability in a time series to look for temporal structure

or pattern that reveals the underlying processes of a complex system. Although fractal

property has been found in many signals in biological systems, how it relates to

behavioral performance and what it implies about the complex system under scrutiny are

still open questions. In this series of experiments, fractal property, movement kinematics,

and behavioral performance were measured on participants performing a reciprocal

tapping task. In Experiment 1, the results indicated that the alpha value from detrended

fluctuation analysis (DFA) reflected deteriorating performance when visual feedback

delay was introduced into the reciprocal tapping task. This finding suggests that this

fractal index is sensitive to performance level in a movement task. In Experiment 2, the

sensitivity of DFA alpha to the coupling strength between sub-processes within a system

was examined by manipulation of task space visibility. The results showed that DFA

alpha was not influenced by disruption of subsystems coupling strength. In Experiment 3,

the sensitivity of DFA alpha to the level of adaptivity in a system under constraints was

examined. Manipulation of the level of adaptivity was not successful, leading to

inconclusive results to this question.

Contributors

Agent

Created

Date Created
  • 2019

155823-Thumbnail Image.png

Idiographic emotion structures in subjective emotional experiences

Description

Psychological theories often reduce descriptions of people’s emotional experiences to a small number of underlying dimensions that capture most of the variation in their responses. These underlying dimensions are typically

Psychological theories often reduce descriptions of people’s emotional experiences to a small number of underlying dimensions that capture most of the variation in their responses. These underlying dimensions are typically uncovered by comparing the self-reported emotions of many individuals at one specific time point, to infer a single underlying structure of emotion for all people. However, theoretical work suggests that underlying dimensions uncovered in this way may not hold when modeling how people change over time. Individuals may differ not just in their typical score on a given dimension of emotion, but in what dimensions best characterize their patterns of emotional experience over time. In this study, participants described two emotional events per day for 35 days, and analyses compared individualized structures of emotion to those generated from many people at one point in time. Analyses using R-technique factor analysis, which compares many people at one time point, most often uncovered a two-factor solution corresponding to positivity and negativity dimensions - a solution well-established in the literature. However, analyses using P-technique factor analysis, which compares many emotional events for one person, uncovered a broader diversity of underlying dimensions. Individuals needed anywhere from one to five factors to best capture their self-reported emotions. Further, dimensions specifically related to romantic relationships were much more common when examining the experiences of individuals over time. This suggests that external factors, such as pursuing or being in a romantic relationship, might lead to a qualitative shift in how emotions are experienced. Research attempting to characterize emotion dynamics, including those attempting to help people shift or regulate their emotions, cannot assume that typical two dimensional structures of emotional experience apply to all people. Instead we must account for how individuals describe their own emotional experiences.

Contributors

Agent

Created

Date Created
  • 2017

155014-Thumbnail Image.png

Heaviness perception dynamics in the leg and arm

Description

Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces

Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces applied to an object and the resulting kinematics for this perception. The current study determined whether these perceived heaviness dynamics are similar in other lifting conditions. Anatomically sourced context-conditioned variability has implications for motor control. The current study investigated whether these implications also hold for heaviness perception. In two experiments participants lifted objects with knee extension lifts and with several arm lifts and reported perceived heaviness. The resulting psychophysiological functions revealed the hypothesized muscle activity and movement ratio in both leg and arms lifts. Further, principal component regressions showed that the forearm flexors and corresponding joint angular accelerations were most relevant for perceived heaviness during arm lifts. Perceived heaviness dynamics are similar in the arms and legs.

Contributors

Agent

Created

Date Created
  • 2016

155089-Thumbnail Image.png

Multiscale interactions in psychological systems

Description

For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained

For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales that make up behavior. Those theories, originating in the study of dynamical systems, suffer from the limitation that fractal analysis reveals only indirect evidence of multiscale interactions. Multiscale interactions must be demonstrated directly because there are many means to generate fractal properties. In two experiments, participants performed a pursuit tracking task while I recorded multiple behavioral and physiological time series. A new analytical technique, multiscale lagged regression, was introduced to capture how those many psychological time series coordinate across multiple scales and time. The results were surprising in that coordination among psychological time series tends to be oscillatory in nature, even when the series are not oscillatory themselves. Those and other results demonstrate the existence of multiscale interactions in psychological systems.

Contributors

Agent

Created

Date Created
  • 2016

157811-Thumbnail Image.png

A recruit's dilemma: collective decision-making and information content in the ant Temnothorax rugatulus

Description

An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such

An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such as food and nest sites. How does it allocate workers appropriately to each resource, and how does it adapt its recruitment communication to the specific needs of each resource type? In this dissertation, I investigate these questions in the ant Temnothorax rugatulus.

In Chapter 1, I summarize relevant past work on food and nest recruitment. Then I describe T. rugatulus and its recruitment behavior, tandem running, and I explain its suitability for these questions. In Chapter 2, I investigate whether food and nest recruiters behave differently. I report two novel behaviors used by recruiters during their interaction with nestmates. Food recruiters perform these behaviors more often than nest recruiters, suggesting that they convey information about target type. In Chapter 3, I investigate whether colonies respond to a tradeoff between foraging and emigration by allocating their workforce adaptively. I describe how colonies responded when I posed a tradeoff by manipulating colony need for food and shelter and presenting both resources simultaneously. Recruitment and visitation to each target partially matched the predictions of the tradeoff hypothesis. In Chapter 4, I address the tuned error hypothesis, which states that the error rate in recruitment is adaptively tuned to the patch area of the target. Food tandem leaders lost followers at a higher rate than nest tandem leaders. This supports the tuned error hypothesis, because food targets generally have larger patch areas than nest targets with small entrances.

This work shows that animal groups face tradeoffs as individual animals do. It also suggests that colonies spatially allocate their workforce according to resource type. Investigating recruitment for multiple resource types gives a better understanding of exploitation of each resource type, how colonies make collective decisions under conflicting goals, as well as how colonies manage the exploitation of multiple types of resources differently. This has implications for managing the health of economically important social insects such as honeybees or invasive fire ants.

Contributors

Agent

Created

Date Created
  • 2019

149433-Thumbnail Image.png

Relative phase dynamics in motor-respiratory coordination

Description

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system.

Contributors

Agent

Created

Date Created
  • 2010

154453-Thumbnail Image.png

A nonlinear analysis of movement variability: stability in a sit to a stand

Description

The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and

The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and clinicians in the treatment of variability in motor control. The current study aims at testing the utility of a nonlinear analysis measure – the Largest Lyapunov exponent (1) – in a whole body movement. Experiment 1 examined this measure, in comparison to traditional linear measure (standard deviation), by having participants perform a sit-to-stand (STS) task on platforms that were either stable or unstable. Results supported the notion that the Lyapunov measure characterized controlled/stable movement across the body more accurately than the traditional standard deviation (SD) measure. Experiment 2 tested this analysis further by presenting participants with an auditory perturbation during performance of the same STS task. Results showed that both the Lyapunov and SD measures failed to detect the perturbation. However, the auditory perturbation may not have been an appropriate perturbation. Limitations of Experiment 2 are discussed, as well as directions for future study.

Contributors

Agent

Created

Date Created
  • 2016

151978-Thumbnail Image.png

Asymmetries in interpersonal coordination: recruiting degrees-of-freedom stabilizes coordination

Description

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater differences in asymmetries between participants yielded greater spatial deviation, resulting in the recruitment of df. Experiment 2 examined whether coordination of movements asymmetrical in shape (circle and line) yield simultaneous recruitment and suppression of df. This experiment also tested whether the initial stability of the performed movement alters the amount of change in df. Results showed that changes in df were exhibited as circles decreasing in circularity and lines increasing in circularity. Further, more changes in df were found circular (suppression) compared to line (recruitment) movements.

Contributors

Agent

Created

Date Created
  • 2013