Matching Items (2,657)
Filtering by

Clear all filters

151978-Thumbnail Image.png
Description
The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater differences in asymmetries between participants yielded greater spatial deviation, resulting in the recruitment of df. Experiment 2 examined whether coordination of movements asymmetrical in shape (circle and line) yield simultaneous recruitment and suppression of df. This experiment also tested whether the initial stability of the performed movement alters the amount of change in df. Results showed that changes in df were exhibited as circles decreasing in circularity and lines increasing in circularity. Further, more changes in df were found circular (suppression) compared to line (recruitment) movements.
ContributorsFine, Justin (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2013
153277-Thumbnail Image.png
Description
This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated

This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.
ContributorsPatten, Kristopher Jakob (Author) / Mcbeath, Michael K (Thesis advisor) / Baxter, Leslie C (Committee member) / Amazeen, Eric L (Committee member) / Dorman, Michael F. (Committee member) / Arizona State University (Publisher)
Created2014
156081-Thumbnail Image.png
Description
Auditory scene analysis (ASA) is the process through which listeners parse and organize their acoustic environment into relevant auditory objects. ASA functions by exploiting natural regularities in the structure of auditory information. The current study investigates spectral envelope and its contribution to the perception of changes in pitch and loudness.

Auditory scene analysis (ASA) is the process through which listeners parse and organize their acoustic environment into relevant auditory objects. ASA functions by exploiting natural regularities in the structure of auditory information. The current study investigates spectral envelope and its contribution to the perception of changes in pitch and loudness. Experiment 1 constructs a perceptual continuum of twelve f0- and intensity-matched vowel phonemes (i.e. a pure timbre manipulation) and reveals spectral envelope as a primary organizational dimension. The extremes of this dimension are i (as in “bee”) and Ʌ (“bun”). Experiment 2 measures the strength of the relationship between produced f0 and the previously observed phonetic-pitch continuum at three different levels of phonemic constraint. Scat performances and, to a lesser extent, recorded interviews were found to exhibit changes in accordance with the natural regularity; specifically, f0 changes were correlated with the phoneme pitch-height continuum. The more constrained case of lyrical singing did not exhibit the natural regularity. Experiment 3 investigates participant ratings of pitch and loudness as stimuli vary in f0, intensity, and the phonetic-pitch continuum. Psychophysical functions derived from the results reveal that moving from i to Ʌ is equivalent to a .38 semitone decrease in f0 and a .75 dB decrease in intensity. Experiment 4 examines the potentially functional aspect of the pitch, loudness, and spectral envelope relationship. Detection thresholds of stimuli in which all three dimensions change congruently (f0 increase, intensity increase, Ʌ to i) or incongruently (no f0 change, intensity increase, i to Ʌ) are compared using an objective version of the method of limits. Congruent changes did not provide a detection benefit over incongruent changes; however, when the contribution of phoneme change was removed, congruent changes did offer a slight detection benefit, as in previous research. While this relationship does not offer a detection benefit at threshold, there is a natural regularity for humans to produce phonemes at higher f0s according to their relative position on the pitch height continuum. Likewise, humans have a bias to detect pitch and loudness changes in phoneme sweeps in accordance with the natural regularity.
ContributorsPatten, K. Jakob (Author) / Mcbeath, Michael K (Thesis advisor) / Amazeen, Eric L (Committee member) / Glenberg, Arthur W (Committee member) / Zhou, Yi (Committee member) / Arizona State University (Publisher)
Created2017
155014-Thumbnail Image.png
Description
Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces applied to an object and the resulting kinematics for this perception. The current study determined whether these perceived heaviness

Perceived heaviness of lifted objects has been shown to scale to a ratio of muscle activity and movement during elbow lifts. This scaling reflects the importance of the forces applied to an object and the resulting kinematics for this perception. The current study determined whether these perceived heaviness dynamics are similar in other lifting conditions. Anatomically sourced context-conditioned variability has implications for motor control. The current study investigated whether these implications also hold for heaviness perception. In two experiments participants lifted objects with knee extension lifts and with several arm lifts and reported perceived heaviness. The resulting psychophysiological functions revealed the hypothesized muscle activity and movement ratio in both leg and arms lifts. Further, principal component regressions showed that the forearm flexors and corresponding joint angular accelerations were most relevant for perceived heaviness during arm lifts. Perceived heaviness dynamics are similar in the arms and legs.
ContributorsWaddell, Morgan (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2016
155089-Thumbnail Image.png
Description
For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales

For many years now, researchers have documented evidence of fractal scaling in psychological time series. Explanations of fractal scaling have come from many sources but those that have gained the most traction in the literature are theories that suggest fractal scaling originates from the interactions among the multiple scales that make up behavior. Those theories, originating in the study of dynamical systems, suffer from the limitation that fractal analysis reveals only indirect evidence of multiscale interactions. Multiscale interactions must be demonstrated directly because there are many means to generate fractal properties. In two experiments, participants performed a pursuit tracking task while I recorded multiple behavioral and physiological time series. A new analytical technique, multiscale lagged regression, was introduced to capture how those many psychological time series coordinate across multiple scales and time. The results were surprising in that coordination among psychological time series tends to be oscillatory in nature, even when the series are not oscillatory themselves. Those and other results demonstrate the existence of multiscale interactions in psychological systems.
ContributorsLikens, Aaron D (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Cooke, Nancy L (Committee member) / Glenberg, Arthur M. (Committee member) / Arizona State University (Publisher)
Created2016
149433-Thumbnail Image.png
Description
Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system.
ContributorsHessler, Eric Edward (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Glenberg, Arthur M. (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2010