Matching Items (20)

128252-Thumbnail Image.png

Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

Description

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control.

Contributors

Agent

Created

Date Created
  • 2014-06-17

128656-Thumbnail Image.png

A Strategy to Establish a Quality Assurance/Quality Control Plan for the Application of Biosensors for the Detection of E. coli in Water

Description

Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing.

Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities.

Contributors

Agent

Created

Date Created
  • 2017-01-03

128694-Thumbnail Image.png

Impact of Environmental Factors on Legionella Populations in Drinking Water

Description

To examine the impact of environmental factors on Legionella in drinking water distribution systems, the growth and survival of Legionella under various conditions was studied. When incubated in tap water

To examine the impact of environmental factors on Legionella in drinking water distribution systems, the growth and survival of Legionella under various conditions was studied. When incubated in tap water at 4 °C, 25 °C, and 32 °C, L. pneumophila survival trends varied amongst the temperatures, with the stable populations maintained for months at 25 °C and 32 °C demonstrating that survival is possible at these temperatures for extended periods in oligotrophic conditions. After inoculating coupons of PVC, copper, brass, and cast iron, L. pneumophila colonized biofilms formed on each within days to a similar extent, with the exception of cast iron, which contained 1-log less Legionella after 90 days. L. pneumophila spiked in a model drinking water distribution system colonized the system within days. Chlorination of the system had a greater effect on biofilm-associated Legionella concentrations, with populations returning to pre-chlorination levels within six weeks. Biofilms sampled from drinking water meters collected from two areas within central Arizona were analyzed via PCR for the presence of Legionella. Occurrence in only one area indicates that environmental differences in water distribution systems may have an impact on the survival of Legionella. These results document the impact of different environmental conditions on the survival of Legionella in water.

Contributors

Agent

Created

Date Created
  • 2015-05-19

131516-Thumbnail Image.png

Multivariable Analysis for Irrigation with Gray Water, Impact of Turbidity and Organic Content in Gray Water on Bacterial Inactivation

Description

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.

Contributors

Agent

Created

Date Created
  • 2020-05

131521-Thumbnail Image.png

Impact of Turbidity on the UV Inactivation of Escherichia coli

Description

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.

Contributors

Agent

Created

Date Created
  • 2020-05

153234-Thumbnail Image.png

Colonization of granular activated carbon media filters by Legionella and heterotrophic bacterial cells

Description

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.

Contributors

Agent

Created

Date Created
  • 2014

154132-Thumbnail Image.png

Utilization of fluorescent microspheres as a surrogate for Cryptosporidium removal in conventional drinking water treatment

Description

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.

Contributors

Agent

Created

Date Created
  • 2015

158669-Thumbnail Image.png

Aerosolization of Microbial Pathogens and Indicator to Assess their Transport and Dispersion in Air

Description

“Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals” (Alsved et al., 2018). Many airborne pathogens

“Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals” (Alsved et al., 2018). Many airborne pathogens cause diseases, such as Legionnaires disease, which is a type of pneumonia caused due to Legionella. Since the first report of a Legionella outbreak in 1976, or reports of Non – tuberculous Mycobacterium (NTM) outbreaks in hospital and healthcare settings by the CDC, it is significant to understand the behavior, occurrence and persistence of opportunistic pathogenic aerosols in the atmosphere. This study comprises a literature review and experimental work on airborne dispersion of 4 microorganisms – E. coli, Legionella pneumophila, Mycobacterium phlei and bacteriophage P22. The literature review summarizes their characteristics, their potential sources, disease outbreaks, collection and detection methodologies, environmental conditions for their growth and survival and few recommendations for reducing potential outbreaks. Aerosolization of each of these microorganisms was carried out separately in a closed environment using a spray gun and a nebulizer. The spraying time consisted of 1 sec, 5secs or 10secs, from one end of a chamber, and collecting air sample from the other end of the chamber, using a microbial air sampler. The air sample collection was performed to understand their transport, dispersion and reduction in air. Legionella showed a log reduction of ~4 using spray gun and ≤0.6 using nebulizer, whereas Mycobacterium showed a log reduction of ~4.5 using spray gun and ≤0.7 using nebulizer, respectively. Bacteriophage P22 on the other hand showed a 4 log reduction using spray gun and ≤1.4 using the nebulizer. This shows that aerosolization of microorganisms depends on its cell structure, size and survivability. Legionella follows the air – to – water transmission route, and Mycobacterium is hydrophobic, due to which their aerosols are more stable and active, than E. coli. Other environmental properties such as relative humidity and temperature impact the transport and dispersion of microorganisms in air.

The experiments in this study validated the aerosolization and transport of Legionella, Mycobacterium and bacteriophage P22 in a closed environment over time. In general, microbial concentration collected in air increased with aerosolization time of the test water. On the other hand, their concentration significantly decreased as elapsed time progressed after aerosolization, due to settling effect of larger particles and potential reduction due to inactivation of bacterial and viruses in the air.

Contributors

Agent

Created

Date Created
  • 2020

150939-Thumbnail Image.png

Investigation into Bacteroides persistence in drinking water distribution systems and alternative methods to detect this fecal indicator

Description

Bacteroides have been suggested as alternative indicators of fecal pollution since they are highly abundant in feces and are thought to have limited potential to grow in environment. However, recent

Bacteroides have been suggested as alternative indicators of fecal pollution since they are highly abundant in feces and are thought to have limited potential to grow in environment. However, recent literature suggests that Bacteroides can potentially survive within water distribution systems. The first objective of this study was therefore to investigate the validity of Bacteroides as a fecal indicator for drinking water through laboratory experiments and field studies. Experiments were performed using a laboratory scale PVC model water distribution system that was spiked with 109 Bacteroides. Samples were collected over the following four and analyzed by culture and molecular-based techniques. Second, field studies were performed by collecting water meters from two large chlorinated water distribution systems in central Arizona. Upon removal for repair by city personnel, meters were collected and biofilms samples were gathered within two hours. The biofilms were then analyzed using culture and molecular-based assays. The results from these studies support the hypothesis that Bacteroides DNA may be found in water distribution systems despite the difficulty of cultivating these bacterial cells. These experiments present the importance of considering biofilm interactions with fecal indicator bacteria when performing molecular assays on environmental samples, as biofilms may provide protection from high oxygen concentrations and grazing protozoa in bulk water that limit the persistence Bacteroides in the environment. Although the significance of biofilm interactions with surface or recreational waters may be small, they are likely important when considering drinking water delivered through distribution systems. The second objective of this study was to investigate alternative detection methodologies for the fecal indicator Bacteroides. In particular, this study focused on using a simplified protocol of Nucleic Acid Sequence Based Amplification (NASBA) and Thermophilic Helicase-Dependent Amplification (tHDA) to amplify the highly conserved 16s rRNA gene in the genomic DNA of fecal indicator Bacteroides. The results of this study show that the simplified NASBA procedure was not able to amplify the target, while continuous problems with tHDA exposed the methods lack of reliability. These results suggest higher reliability in the isothermal amplification methods needs to be achieved before application to environmental samples.

Contributors

Agent

Created

Date Created
  • 2012

154188-Thumbnail Image.png

An investigation of factors affecting the spread of D. bugensis in Arizona's reservoirs

Description

Quagga Mussels (Dreissena bugensis) are an invasive species of mollusk that have established themselves within the Colorado River system of Arizona since 2007. However, despite close proximity and frequent travel

Quagga Mussels (Dreissena bugensis) are an invasive species of mollusk that have established themselves within the Colorado River system of Arizona since 2007. However, despite close proximity and frequent travel by recreational boaters between reservoirs, they have not yet infested the Salt River or Verde River systems. Laboratory experimentation was done to test the survival rate of adult D. bugensis specimens in waters collected from Bartlett Lake (Verde River), Saguaro Lake (Salt River), and Salt River Project (SRP) canals (Salt River/Verde River/Colorado River blend) as well as Central Arizona Project (CAP) canals with the addition of turbidity to simulate high runoff storm events. Under each condition, adult survival for a time period of 21 days exceeded 98%, ruling out water chemistry or turbidity as a factor. Spawning was investigated using mussels collected from Lake Pleasant in August 2015. In 4 trials of serotonin dosage between 0.5 – 1.0 mMol, spawning was not successful. Calanoid copepod predation was also investigated by field sampling at Lake Pleasant, Saguaro Lake, and Bartlett Lake during September 2015. Calanoid copepods were identified in Lake Pleasant at a density of 104.22 individuals per cubic meter at a depth of 2 meters and 9.75 individuals per cubic meter at the surface. Calanoid copepods were not found in Bartlett Lake or Saguaro Lake, ruling out copepod predation as a factor. Finally, dissolved oxygen and temperature trends were analyzed in each reservoir. While temperature profiles are similar throughout the year, seasonal drops in dissolved oxygen below survivable concentrations for D. bugensis has been observed in both Saguaro Lake and Bartlett Lake but not Lake Pleasant, representing the most plausible explanation for no observed infestation.

Contributors

Agent

Created

Date Created
  • 2015