Matching Items (15)
149372-Thumbnail Image.png
Description
A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism (CD) spectroscopy was used to elucidate the role of Cu2+ in stabilizing SmbP structure against unfolding induced by decreased pH, increased temperature, and chemical denaturants. The significant stabilization effects of Cu2+ were demonstrated by the observation that Cu2+-SmbP remained fully folded under extreme environmental conditions, such as acidic pH, 96 °C, and 8 M urea. Also, it was shown that Cu2+ is able to induce the refolding of unfolded SmbP in acidic solutions. These findings imply that the coordination of Cu2+ to histidine residues is responsible for the stabilization effects. The crystal structure of SmbP without Cu2+ has been determined. However, attempts to crystallize Cu2+-SmbP have not been successful. In this study, multidimensional NMR experiments were conducted in order to gain additional information regarding the Cu2+-SmbP structure, in particular its metal binding sites. Unambiguous resonance assignments were successfully made. Cα secondary chemical shifts confirmed that SmbP has a four α-helical structure. A Cu2+-protein titration experiment monitored by NMR indicated a top-to-bottom, sequential metal binding pattern for SmbP. In addition, several bioinformatics tools were used to complement the experimental approach and identity of the ligands in Cu2+-binding sites in SmbP is proposed.
ContributorsYan, Qin (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
149356-Thumbnail Image.png
Description
The metalloenzyme quercetin 2,3-dioxygenase (QueD) catalyzes the oxidative decomposition of the aromatic compound, quercetin. The most recently characterized example is a product of the bacterium Bacillus subtilis (BsQueD); all previous examples were fungal enzymes from the genus Aspergillus (AQueD). AQueD contains a single atom of Cu(II) per monomer. However, BsQueD,

The metalloenzyme quercetin 2,3-dioxygenase (QueD) catalyzes the oxidative decomposition of the aromatic compound, quercetin. The most recently characterized example is a product of the bacterium Bacillus subtilis (BsQueD); all previous examples were fungal enzymes from the genus Aspergillus (AQueD). AQueD contains a single atom of Cu(II) per monomer. However, BsQueD, over expressed in Escherichia coli, contains Mn(II) and has two metal-binding sites, and therefore two possible active sites per monomer. To understand the contribution of each site to BsQueD's activity, the N-terminal and C-terminal metal-binding sites have been mutated individually in an effort to disrupt metal binding. In wild type BsQueD, each Mn(II) is ligated by three histidines (His) and one glutamate (Glu). All efforts to mutate His residues to non-ligating residues resulted in insoluble protein or completely inactive enzyme. A soluble mutant was expressed that replaced the Glu residue with a fourth His at the N-terminal domain. This mutant (E69H) has a specific activity of 0.00572 &mumol;/min/mg, which is nearly 3000-fold lower than the rate of wild type BsQueD (15.9 &mumol;/min/mg). Further analysis of E69H by inductively couple plasma mass spectrometry revealed that this mutant contains only 0.062 mol of Mn(II) per mol of enzyme. This is evidence that disabling metal-ligation at one domain influences metal-incorporation at the other. During the course of the mutagenic study, a second, faster purification method was developed. A hexahistidine tag and an enterokinase cleavage site were fused to the N-terminus of BsQueD (6xHis-BsQueD). Active enzyme was successfully expressed and purified with a nickel column in 3 hours. This is much faster than the previous multi-column purification, which took two full days to complete. However, the concentration of soluble, purified enzyme (1.8 mg/mL) was much lower than concentrations achieved with the traditional method (30 mg/mL). While the concentration of 6xHis-BsQueD is sufficient for some analyses, there are several characterization techniques that must be conducted at higher concentrations. Therefore, it will be advantageous to continue using both purification methods in the future.
ContributorsBowen, Sara (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2010
135513-Thumbnail Image.png
Description
Circular Dichroism (CD) and electron paramagnetic resonance (EPR) were used to investigate the metal-binding sites of five different four-helix bundles, which have slight differences in the population of their side chains. Of the four-helix bundles, three have central dinuclear metal binding sites; two of these three also have outer dinuclear

Circular Dichroism (CD) and electron paramagnetic resonance (EPR) were used to investigate the metal-binding sites of five different four-helix bundles, which have slight differences in the population of their side chains. Of the four-helix bundles, three have central dinuclear metal binding sites; two of these three also have outer dinuclear metal binding sites. The other two peptides have two identical, non-central, dinuclear metal binding sites. The CD spectra showed changes in the secondary structure of the peptides, and X-band EPR spectra of these peptides revealed the unique four peak signal of Cu(II). These findings improve our understanding of the metal binding environments of these peptides.
ContributorsCanarie, Elizabeth Rose (Author) / Allen, James (Thesis director) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131598-Thumbnail Image.png
Description
Typical eukaryotic organelles use membranes formed by lipid bilayers in order to compartmentalize their functions within the cell. However, cells also contain membraneless organelles formed by intrinsically disordered proteins (IDPs) via liquid-liquid phase separation. The organelles form localized compartments that separate their contents from the environment.1 Here, this mechanism is

Typical eukaryotic organelles use membranes formed by lipid bilayers in order to compartmentalize their functions within the cell. However, cells also contain membraneless organelles formed by intrinsically disordered proteins (IDPs) via liquid-liquid phase separation. The organelles form localized compartments that separate their contents from the environment.1 Here, this mechanism is used to generate artificial membraneless organelles that comprise a chemical reaction. An IDP, DEAD-box helicase (Ddx4), was bioconjugated to an enzyme, horseradish peroxidase (HRP), through the use of a bifunctional chemical linker, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), in order to examine if the enzyme could be incorporated in droplets and whether its activity would be affected. The conjugation of HRP-SMCC (43.4 kDa) to Ddx4 (25.6 kDa) was successful: SDS-PAGE analysis confirmed the presence of a product that was within the range of a full conjugate.
ContributorsFavila, Saul Roberto (Author) / Ghirlanda, Giovanna (Thesis director) / Vaiana, Sara (Committee member) / Allen, James (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05