Matching Items (17)
151376-Thumbnail Image.png
Description
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and

Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and smn2, that are identical with the exception of a C to T conversion in exon 7 of the smn2 gene. SMA patients lacking the smn1 gene, rely on smn2 for production of SMN. Due to an alternative splicing event, smn2 primarily encodes a non-functional SMN lacking exon 7 (SMN D7) as well as a low amount of functional full-length SMN (SMN WT). SMN WT is ubiquitously expressed in all cell types, and it remains unclear how low levels of SMN WT in motor neurons lead to motor neuron degradation and SMA. SMN and its associated proteins, Gemin2-8 and Unrip, make up a large dynamic complex that functions to assemble ribonucleoproteins. The aim of this project was to characterize the interactions of the core SMN-Gemin2 complex, and to identify differences between SMN WT and SMN D7. SMN and Gemin2 proteins were expressed, purified and characterized via size exclusion chromatography. A stable N-terminal deleted Gemin2 protein (N45-G2) was characterized. The SMN WT expression system was optimized resulting in a 10-fold increase of protein expression. Lastly, the oligomeric states of SMN and SMN bound to Gemin2 were determined. SMN WT formed a mixture of oligomeric states, while SMN D7 did not. Both SMN WT and D7 bound to Gemin2 with a one-to-one ratio forming a heterodimer and several higher-order oligomeric states. The SMN WT-Gemin2 complex favored high molecular weight oligomers whereas the SMN D7-Gemin2 complex formed low molecular weight oligomers. These results indicate that the SMA mutant protein, SMN D7, was still able to associate with Gemin2, but was not able to form higher-order oligomeric complexes. The observed multiple oligomerization states of SMN and SMN bound to Gemin2 may play a crucial role in regulating one or several functions of the SMN protein. The inability of SMN D7 to form higher-order oligomers may inhibit or alter those functions leading to the SMA disease phenotype.
ContributorsNiday, Tracy (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2012
152304-Thumbnail Image.png
Description
X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease resulting in muscle atrophy and paralysis via degeneration of motor neurons in the spinal cord. In this work, we used X-ray diffraction technique to solve the structures of the three variant of the of SMN protein, namely SMN 1-4, SMN-WT, and SMN-Δ7. The SMN 1-4, SMN-WT, and SMN-Δ7 crystals were diffracted to 2.7 Å, 5.5 Å and 3.0 Å, respectively. The three-dimensional structures of the three SMN proteins have been solved. The FMO protein from Pld. phaeum is a water soluble protein that is embedded in the cytoplasmic membrane and serves as an energy transfer funnel between the chlorosome and the reaction center. The FMO crystal diffracted to 1.99Å resolution and the three-dimensional structure has been solved. In previous studies, double mutant, DX, protein was purified and crystallized in the presence of ATP (Simmons et al., 2010; Smith et al. 2007). DX is a synthetic ATP binding protein which resulting from a random selection of DNA library. In this study, DX protein was purified and crystallized without the presence of ATP to investigate the conformational change in DX structure. The crystals of DX were diffracted to 2.5 Å and the three-dimensional structure of DX has been solved.
ContributorsSeng, Chenda O (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2013
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
150554-Thumbnail Image.png
Description
Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis. The enzymatic turnover of Clostridium acetobutylicum [FeFe]-hydrogenase has been investigated through the use of electrochemical and scanning probe techniques. Scanning

Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis. The enzymatic turnover of Clostridium acetobutylicum [FeFe]-hydrogenase has been investigated through the use of electrochemical and scanning probe techniques. Scanning tunneling microscopy (STM) imaging revealed sub-monolayer surface coverage. Cyclic voltammetry yielded a catalytic, cathodic hydrogen production signal similar to that observed for a platinum electrode. From the direct observation of single enzymes and the macroscopic electrochemical measurements obtained from the same electrode, the apparent turnover frequency (TOF) per single enzyme molecule as a function of potential was determined. The TOF at 0.7 V vs. Ag/AgCl for the four SAMs yielded a decay constant for electronic coupling (β) through the SAM of ~ 0.82 Å -1, in excellent agreement with published values for similar SAMs. One mechanism used by plants to protect against damage is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ is described. When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to perform useful photochemistry. Charge transport was also studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-Perylenetetracarboxylic diimide (PTCDI) molecule. A reduction in the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals energy gap due to the electronic properties of the substituents is seen when compared to an unsubstituted-PTCDI. The small HOMO-LUMO energy gap allows for switching between electron- and hole-dominated charge transport with a gate voltage, thus demonstrating a single-molecule ambipolar field effect transistor.
ContributorsMadden, Christopher (Author) / Moore, Thomas A. (Thesis advisor) / Jones, Anne (Committee member) / Tao, Nongjian (Committee member) / Arizona State University (Publisher)
Created2012
150701-Thumbnail Image.png
Description
The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties

The sun provides Earth with a virtually limitless source of energy capable of sustaining all of humanity's needs. Photosynthetic organisms have exploited this energy for eons. However, efficiently converting solar radiation into a readily available and easily transportable form is complex. New materials with optimized physical, electrochemical, and photophysical properties are at the forefront of organic solar energy conversion research. In the work presented herein, porphyrin and organometallic dyes with widely-varied properties were studied for solar energy applications. In one project, porphyrins and porphyrin-fullerene dyads with aniline-like features were polymerized via electrochemical methods into semiconductive thin films. These were shown to have high visible light absorption and stable physical and electrochemical properties. However, experimentation using porphyrin polymer films as both the light absorber and semiconductor in a photoelectrochemical cell showed relatively low efficiency of converting absorbed solar energy into electricity. In separate work, tetra-aryl porphyrin derivatives were examined in conjunction with wide-bandgap semiconductive oxides TiO2 and SnO2. Carboxylic acid-, phosphonic acid-, and silatrane-functionalized porphyrins were obtained or synthesized for attachment to the metal oxide species. Electrochemical, photophysical, photoelectrochemical, and surface stability studies of the porphyrins were performed for comparative purposes. The order of surface linkage stability on TiO2 in alkaline conditions, from most stable to least, was determined to be siloxane > phosphonate > carboxylate. Finally, porphyrin dimers fused via their meso and beta positions were synthesized using a chemical oxidative synthesis with a copper(II) oxidant. The molecules exhibit strong absorption in the visible and near-infrared spectral regions as well as interesting electrochemical properties suggesting possible applications in light harvesting and redox catalysis.
ContributorsBrennan, Bradley J (Author) / Gust, Devens (Thesis advisor) / Moore, Thomas A. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150763-Thumbnail Image.png
Description
Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties

Acquisition of fluorescence via autocatalytic processes is unique to few proteins in the natural world. Fluorescent proteins (FPs) have been integral to live-cell imaging techniques for decades; however, mechanistic information is still emerging fifty years after the discovery of the original green fluorescent protein (GFP). Modification of the fluorescence properties of the proteins derived from GFP allows increased complexity of experiments and consequently, information content of the data acquired. The importance of arginine-96 in GFP has been widely discussed. It has been established as vital to the kinetics of chromophore maturation and to the overall fold of GFP before post-translational self-modification. Its value during chromophore maturation has been demonstrated by mutational studies and a hypothesis proposed for its catalytic function. A strategy is described herein to determine its pKa value via NMR to determine whether Arg96 possesses the chemical capacity to function as a general base during GFP chromophore biosynthesis. Förster resonance energy transfer (FRET) techniques commonly employ Enhanced Cyan Fluorescent Proteins (ECFPs) and their derivatives as donor fluorophores useful in real-time, live-cell imaging. These proteins have a tryptophan-derived chromophore that emits light in the blue region of the visible spectrum. Most ECFPs suffer from fluorescence instability, which, coupled with their low quantum yield, makes data analysis unreliable. The structural heterogeneity of these proteins also results in undesirable photophysical characteristics. Recently, mCerulean3, a ten amino acid mutant of ECFP, was introduced as an optimized FRET-donor protein (1). The amino acids changed include a mobile residue, Asp148, which has been mutated to a glycine in the new construct, and Thr65 near the chromophore has been mutated to a serine, the wild-type residue at this location. I have solved the x-ray crystal structure of mCerulean3 at low pH and find that the pH-dependent isomerization has been eliminated. The chromophore is in the trans-conformation previously observed in Cerulean at pH 8. The mutations that increase the quantum yield and improve fluorescence brightness result in a stable, bright donor fluorophore well-suited for use in quantitative microscopic imaging.
ContributorsWatkins, Jennifer L (Author) / Wachter, Rebekka M. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2012
150988-Thumbnail Image.png
Description
The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial

The photosynthetic reaction center is a type of pigment-protein complex found widely in photosynthetic bacteria, algae and higher plants. Its function is to convert the energy of sunlight into a chemical form that can be used to support other life processes. The high efficiency and structural simplicity make the bacterial reaction center a paradigm for studying electron transfer in biomolecules. This thesis starts with a comparison of the primary electron transfer process in the reaction centers from the Rhodobacter shperoides bacterium and those from its thermophilic homolog, Chloroflexus aurantiacus. Different temperature dependences in the primary electron transfer were found in these two type of reaction centers. Analyses of the structural differences between these two proteins suggested that the excess surface charged amino acids as well as a larger solvent exposure area in the Chloroflexus aurantiacus reaction center could explain the different temperature depenence. The conclusion from this work is that the electrostatic interaction potentially has a major effect on the electron transfer. Inspired by these results, a single point mutant was designed for Rhodobacter shperoides reaction centers by placing an ionizable amino acid in the protein interior to perturb the dielectrics. The ionizable group in the mutation site largely deprotonated in the ground state judging from the cofactor absorption spectra as a function of pH. By contrast, a fast charge recombination assoicated with protein dielectric relaxation was observed in this mutant, suggesting the possibility that dynamic protonation/deprotonation may be taking place during the electron transfer. The fast protein dielectric relaxation occuring in this mutant complicates the electron transfer pathway and reduces the yield of electron transfer to QA. Considering the importance of the protein dielectric environment, efforts have been made in quantifying variations of the internal field during charge separation. An analysis protocol based on the Stark effect of reaction center cofactor spectra during charge separation has been developed to characterize the charge-separated radical field acting on probe chromophores. The field change, monitored by the dynamic Stark shift, correlates with, but is not identical to, the electron transfer kinetics. The dynamic Stark shift results have lead to a dynamic model for the time-dependent dielectric that is complementary to the static dielectric asymmetry observed in past steady state experiments. Taken together, the work in this thesis emphasizes the importance of protein electrostatics and its dielectric response to electron transfer.
ContributorsGuo, Zhi (Author) / Woodbury, Neal W (Thesis advisor) / Lindsay, Stuart M (Committee member) / Ross, Robert (Committee member) / Ozkan, Banu S (Committee member) / Moore, Thomas A. (Committee member) / Arizona State University (Publisher)
Created2012
155917-Thumbnail Image.png
Description
The evolution of photosynthesis caused the oxygen-rich atmosphere in which we thrive today. Although the reaction centers involved in oxygenic photosynthesis probably evolved from a protein like the reaction centers in modern anoxygenic photosynthesis, modern anoxygenic reaction centers are poorly understood. One such anaerobic reaction center is found in Heliobacterium

The evolution of photosynthesis caused the oxygen-rich atmosphere in which we thrive today. Although the reaction centers involved in oxygenic photosynthesis probably evolved from a protein like the reaction centers in modern anoxygenic photosynthesis, modern anoxygenic reaction centers are poorly understood. One such anaerobic reaction center is found in Heliobacterium modesticaldum. Here, the photosynthetic properties of H. modesticaldum are investigated, especially as they pertain to its unique photochemical reaction center.

The first part of this dissertation describes the optimization of the previously established protocol for the H. modesticaldum reaction center isolation. Subsequently, electron transfer is characterized by ultrafast spectroscopy; the primary electron acceptor, a chlorophyll a derivative, is reduced in ~25 ps, and forward electron transfer occurs directly to a 4Fe-4S cluster in ~650 ps without the requirement for a quinone intermediate. A 2.2-angstrom resolution X-ray crystal structure of the homodimeric heliobacterial reaction center is solved, which is the first ever homodimeric reaction center structure to be solved, and is discussed as it pertains to the structure-function relationship in energy and electron transfer. The structure has a transmembrane helix arrangement similar to that of Photosystem I, but differences in antenna and electron transfer cofactor positions explain variations in biophysical comparisons. The structure is then compared with other reaction centers to infer evolutionary hypotheses suggesting that the ancestor to all modern reaction centers could reduce mobile quinones, and that Photosystem I added lower energy cofactors to its electron transfer chain to avoid the formation of singlet oxygen.

In the second part of this dissertation, hydrogen production rates of H. modesticaldum are quantified in multiple conditions. Hydrogen production only occurs in cells grown without ammonia, and is further increased by removal of N2. These results are used to propose a scheme that summarizes the hydrogen-production metabolism of H. modesticaldum, in which electrons from pyruvate oxidation are shuttled through an electron transport pathway including the reaction center, ultimately reducing nitrogenase. In conjunction, electron microscopy images of H. modesticaldum are shown, which confirm that extended membrane systems are not exhibited by heliobacteria.
ContributorsGisriel, Christopher J (Author) / Redding, Kevin E (Thesis advisor) / Jones, Anne K (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2017
156505-Thumbnail Image.png
Description
The linear chromosomes ends in eukaryotes are protected by telomeres, a nucleoprotein structure that contains telomeric DNA with repetitive sequence and associated proteins. Telomerase is an RNA-dependent DNA polymerase that adds telomeric DNA repeats to the 3'-ends of chromosomes to offset the loss of terminal DNA repeats during DNA replication.

The linear chromosomes ends in eukaryotes are protected by telomeres, a nucleoprotein structure that contains telomeric DNA with repetitive sequence and associated proteins. Telomerase is an RNA-dependent DNA polymerase that adds telomeric DNA repeats to the 3'-ends of chromosomes to offset the loss of terminal DNA repeats during DNA replication. It consists of two core components: a telomerase reverse transcriptase (TERT) and a telomerase RNA (TR). Telomerase uses a short sequence in its integral RNA component as template to add multiple DNA repeats in a processive manner. However, it remains unclear how the telomerase utilizes the short RNA template accurately and efficiently during DNA repeat synthesis. As previously reported human telomerase nucleotide synthesis arrests upon reaching the end of its RNA template by a unique template-embedded pause signal. In this study, I demonstrate pause signal remains active following template regeneration and inhibits the intrinsic processivity and rate of telomerase repeat addition. Furthermore, I have found that the human telomerase catalytic cycle comprises a crucial and slow incorporation of the first nucleotide after template translocation. This slow nucleotide incorporation step drastically limits repeat addition processivity and rate, which is alleviated with elevated concentrations of dGTP. Additionally, molecular mechanism of the disease mutants on telomerase specific motif T, K570N, have been explored. Finally, I studied how telomerase selective inhibitor BIBR 1532 reduce telomerase repeat addition processivity by function assay. Together, these results shed new light on telomerase catalytic cycle and the importance of telomerase for biomedicine.
ContributorsChen, Yinnan (Author) / Chen, Julian J-L (Thesis advisor) / Jones, Anne K (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2018
156914-Thumbnail Image.png
Description
The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites

The molecular modification of semiconductors has applications in energy

conversion and storage, including artificial photosynthesis. In nature, the active sites of

enzymes are typically earth-abundant metal centers and the protein provides a unique

three-dimensional environment for effecting catalytic transformations. Inspired by this

biological architecture, a synthetic methodology using surface-grafted polymers with

discrete chemical recognition sites for assembling human-engineered catalysts in three-dimensional

environments is presented. The use of polymeric coatings to interface cobalt-containing

catalysts with semiconductors for solar fuel production is introduced in

Chapter 1. The following three chapters demonstrate the versatility of this modular

approach to interface cobalt-containing catalysts with semiconductors for solar fuel

production. The catalyst-containing coatings are characterized through a suite of

spectroscopic techniques, including ellipsometry, grazing angle attenuated total reflection

Fourier transform infrared spectroscopy (GATR-FTIR) and x-ray photoelectron (XP)

spectroscopy. It is demonstrated that the polymeric interface can be varied to control the

surface chemistry and photoelectrochemical response of gallium phosphide (GaP) (100)

electrodes by using thin-film coatings comprising surface-immobilized pyridyl or

imidazole ligands to coordinate cobaloximes, known catalysts for hydrogen evolution.

The polymer grafting chemistry and subsequent cobaloxime attachment is applicable to

both the (111)A and (111)B crystal face of the gallium phosphide (GaP) semiconductor,

providing insights into the surface connectivity of the hard/soft matter interface and

demonstrating the applicability of the UV-induced immobilization of vinyl monomers to

a range of GaP crystal indices. Finally, thin-film polypyridine surface coatings provide a

molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto

GaP. In all constructs, photoelectrochemical measurements confirm the hybrid

photocathode uses solar energy to power reductive fuel-forming transformations in

aqueous solutions without the use of organic acids, sacrificial chemical reductants, or

electrochemical forward biasing.
ContributorsBeiler, Anna Mary (Author) / Moore, Gary F. (Thesis advisor) / Moore, Thomas A. (Thesis advisor) / Redding, Kevin E. (Committee member) / Allen, James P. (Committee member) / Arizona State University (Publisher)
Created2018