Matching Items (153)
151641-Thumbnail Image.png
Description
Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector

Vaccinia virus (VACV) is the current vaccine for the highly infectious smallpox disease. Since the eradication of smallpox, VACV has been developed extensively as a heterologous vaccine vector for several pathogens. However, due to the complications associated with this replication competent virus, the safety and efficacy of VACV vaccine vector has been reevaluated. To evaluate the safety and efficacy of VACV, we study the interactions between VACV and the host innate immune system, especially the type I interferon (IFN) signaling pathways. In this work, we evaluated the role of protein kinase R (PKR) and Adenosine Deaminase Acting on RNA 1(ADAR1), which are induced by IFN, in VACV infection. We found that PKR is necessary but is not sufficient to activate interferon regulatory factor 3 (IRF3) in the induction of type I IFN; and the activation of the stress-activated protein kinase/ c-Jun NH2-terminal kinase is required for the PKR-dependent activation of IRF3 during VACV infection. Even though PKR was found to have an antiviral effect in VACV, ADAR1 was found to have a pro-viral effect by destabilizing double stranded RNA (dsRNA), rescuing VACVΔE3L, VACV deleted of the virulence factor E3L, when provided in trans. With the lessons we learned from VACV and host cells interaction, we have developed and evaluated a safe replication-competent VACV vaccine vector for HIV. Our preliminary results indicate that our VACV vaccine vector can still induce the IFN pathway while maintaining the ability to replicate and to express the HIV antigen efficiently. This suggests that this VACV vector can be used as a safe and efficient vaccine vector for HIV.
ContributorsHuynh, Trung Phuoc (Author) / Jacobs, Bertram L (Thesis advisor) / Hogue, Brenda (Committee member) / Chang, Yung (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2013
153112-Thumbnail Image.png
Description
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
ContributorsFaust, James J (Author) / Capco, David G. (Thesis advisor) / Ugarova, Tatiana (Committee member) / Chandler, Douglas (Committee member) / Baluch, Page (Committee member) / Herman, Richard (Committee member) / Arizona State University (Publisher)
Created2014
156370-Thumbnail Image.png
Description
A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB)

A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB) domain, while also performing a separate gene modification using a 20-nt gRNA targeted to a reporter vector. DNA Ligase IV (LIGIV) was chosen as the target for gene repression, given its role in nonhomologous end joining, a common DNA repair process that competes with the more precise homology-directed repair (HDR).

To test for gene editing, a 20-nt gRNA was designed to target a disrupted enhanced green fluorescent protein (EGFP) gene present in a reporter vector. After the gRNA introduced a double-stranded break, cells attempted to repair the cut site via HDR using a DNA template within the reporter vector. In the event of successful gene editing, the EGFP sequence was restored to a functional state and green fluorescence was detectable by flow cytometry. To achieve gene repression, a 14-nt gRNA was designed to target LIGIV. The gRNA included a com protein recruitment domain, which recruited a Com-KRAB fusion protein to facilitate gene repression via chromatin modification of LIGIV. Quantitative polymerase chain reaction was used to quantify repression.

This study expanded upon earlier advancements, offering a novel and versatile approach to genetic modification and transcriptional regulation using CRISPR/Cas9. The overall results show that both gene editing and repression were occurring, thereby providing support for a novel CRISPR/Cas system capable of simultaneous gene modification and regulation. Such a system may enhance the genome engineering capabilities of researchers, benefit disease research, and improve the precision with which gene editing is performed.
ContributorsChapman, Jennifer E (Author) / Kiani, Samira (Thesis advisor) / Ugarova, Tatiana (Thesis advisor) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2018
131523-Thumbnail Image.png
Description
Due to deficient student and new graduate nursing knowledge regarding critical care nursing skills, this project was designed to create additional resources to support increased education and competency. The specific skills identified by veteran nurses as an area of knowledge deficiency among student and new graduate nurses were those relating

Due to deficient student and new graduate nursing knowledge regarding critical care nursing skills, this project was designed to create additional resources to support increased education and competency. The specific skills identified by veteran nurses as an area of knowledge deficiency among student and new graduate nurses were those relating to intra-arterial catheter management. Resources, including checklists and videos, were determined the most appropriate method for providing this education. Content for these resources was derived from a literature review to determine the most evidence-based methods for completing intra-arterial catheter management in practice. These resources were reviewed by an expert panel of critical care nurses and included feedback from a student as the end user of the resources.
ContributorsPowers, Jessica L (Author) / O'Brien, Janet (Thesis director) / Barnum, Leslie (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135827-Thumbnail Image.png
Description
I conducted a qualitative, comparative study on the nursing education systems in the United Kingdom and the United States, focusing on two universities—Arizona State University in Phoenix, Arizona and Leeds Beckett University in Leeds, England. The goals of my thesis included comparing the educational, economic, and cultural aspects of the

I conducted a qualitative, comparative study on the nursing education systems in the United Kingdom and the United States, focusing on two universities—Arizona State University in Phoenix, Arizona and Leeds Beckett University in Leeds, England. The goals of my thesis included comparing the educational, economic, and cultural aspects of the countries and how those aspects impact nursing students on both sides of the pond. The educational and economic aspects were compared by utilizing existing literature and open data sources such as the university websites and publications from comparative education journals, while the cultural differences were evaluated by conducting short, one-on-one interviews with students enrolled in the Adult Health courses at both universities. The findings from the interviews were transcribed and coded, and findings from the sites were compared. While there is an extensive amount of research published regarding comparative education, there has not been much published comparing these developed countries. While there is a significant difference in the structure and cost of the nursing programs, there are more similarities than differences in culture between nursing students interviewed in the US and those interviewed in the UK.
ContributorsTahiliani, Shreja (Author) / Hagler, Debra (Thesis director) / Allen, Angela (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136002-Thumbnail Image.png
Description
Platelets are specialized blood cells that play crucial role in normal physiologic and pathologic processes such as hemostasis, inflammation, wound healing, and host defense. Activation of platelets is essential for platelet function and it includes a complex interplay of adhesion and intracellular signaling molecules. Platelets are known to be activated

Platelets are specialized blood cells that play crucial role in normal physiologic and pathologic processes such as hemostasis, inflammation, wound healing, and host defense. Activation of platelets is essential for platelet function and it includes a complex interplay of adhesion and intracellular signaling molecules. Platelets are known to be activated during vessel injury by a complex interaction of soluble agonists and once activated, they adhere to sub-endothelial matrix to aggregate and secrete granules leading to the formation of platelet aggregate that is necessary for thrombus formation. Platelet integrin plays a central role in platelet adhesive reactions by serving as a receptor for fibrinogen involved in bidirectional transmembrane signaling. In order to elucidate the interaction of integrin with cytoplasmic signaling molecules during inside-out and outside-in signaling, we have studied the kinetics of the recruitment of talin, kindling, filmin-A, skelemin, Scr and syk to the B3 cytoplasmic tails. Platelets were isolated from human blood and activated with ADP/Epinephrine for different times. The complexes of *** with signaling proteins were obtained by immunoprecipitation of platelet lysates with anit-*** monoclonal antibody and then analyzed by Western blotting using antibodies directed against selected signaling proteins. Our results show different kinetics in recruitment of signaling molecules to the B3 integrin cytoplasmic tail during inside-out and outside in signaling.
ContributorsYantas, Alexa Susan (Author) / Ugarova, Tatiana (Thesis director) / Podolnikova, Nataly (Committee member) / Turaga, Ramya (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
132470-Thumbnail Image.png
Description
The purpose of this cross-sectional questionnaire is to explore women’s awareness about the lactation support amendments under the Affordable Care Act (ACA) and the support they received from their insurance companies and employers based on the act. Using convenience sampling and snowball sampling, participants were recruited to participate in a

The purpose of this cross-sectional questionnaire is to explore women’s awareness about the lactation support amendments under the Affordable Care Act (ACA) and the support they received from their insurance companies and employers based on the act. Using convenience sampling and snowball sampling, participants were recruited to participate in a survey through social media and flyers. The goals of this research are to examine the number of women who were 1) aware of the lactation support provisions under the ACA, 2) received breastfeeding support from insurance their health insurance with no cost sharing 3) received reasonable break time and a private space to express milk from their employers, and 4) if there were any challenges in receiving the support mandated under the ACA from their insurers and employers or lactation support in general. The results show that many women who responded to the survey were aware of the amendments under the ACA and many of those women did receive the benefits of the provisions. There were many common reasons for why women did not receive the support they desired. These underlying reasons prevent women from accessing lactation support and provide a challenging environment for women to continue breastfeeding their children.
ContributorsBaker, Michelle Jane (Author) / Bever, Jennie (Thesis director) / Kelly, Lesly (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133254-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury

Traumatic brain injury (TBI) is a serious health problem around the world with few available treatments. TBI pathology can be divided into two phases: the primary insult and the secondary injury. The primary insult results from the bump or blow to the head that causes the initial injury. Secondary injury lasts from hours to months after the initial injury and worsens the primary insult, creating a greater area of tissue damage and cell death. Many current treatments focus on lessening the severity of secondary injury. Secondary injury results from the cyclical nature of tissue damage. Inflammatory pathways cause damage to tissue, which in turn reinforces inflammation. Since many inflammatory pathways are interconnected, targeting individual products within these pathways is impractical. A target at the beginning of the pathway, such as a receptor, must be chosen to break the cycle. This project aims to identify novel nanobodies that could temporarily inactivate the CD36 receptor, which is a receptor found on many immune and endothelial cells. CD36 initiates and perpetuates the immune system's inflammatory responses. By inactivating this receptor temporarily, inflammation and immune cell entry could be lessened, and therefore secondary injury could be attenuated. This project utilized phage display as a method of nanobody selection. The specific phage library utilized in this experiment consists of human heavy chain (V_H) segments, also known as domain antibodies (dAbs), displayed on M13 filamentous bacteriophage. Phage display mimics the process of immune selection. The target is bound to a well as a means of displaying it to the phage. The phage library is then incubated with the target to allow antibodies to bind. After, the well is washed thoroughly to detach any phage that are not strongly bound. The remaining phage are then amplified in bacteria and run again through the same assay to select for mutations that resulted in higher affinity binding. This process, called biopanning, was performed three times for this project. After biopanning, the library was sequenced using Next Generation sequencing (NGS). This platform enables the entire library to be sequenced, as opposed to traditional Sanger sequencing, which can only sequence single select clones at a time thereby limiting population sampling. This type of genetic sequencing allows trends in the complementarity determining regions (CDRs) of the domain antibody library to be analyzed, using bioinformatics programs such as RStudio, FastAptamer, and Swiss Model. Ultimately, two nanobody candidates were identified for the CD36 receptor.
ContributorsLundgreen, Kendall (Author) / Stabenfeldt, Sarah (Thesis director) / Ugarova, Tatiana (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155139-Thumbnail Image.png
Description
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction

Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is αMβ2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
ContributorsChristenson, Wayne B (Author) / Ros, Robert (Thesis advisor) / Beckstein, Oliver (Committee member) / Lindsay, Stuart (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2016