Matching Items (5,327)
Filtering by

Clear all filters

151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
150352-Thumbnail Image.png
Description
Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) of 7 kHz. The op-amp is built on the popular 2 stage topology with the 2nd stage being cascoded to provide sufficient gain. A novel biasing circuit was successfully developed modifying the gm biasing circuit to retard the performance degradation as the TFTs aged. A switched capacitor 7 bit DAC was developed in only nMOS topology using a-Si:H TFTs, based on charge sharing concept. The DAC achieved a maximum differential non-linearity (DNL) of 0.6 least significant bit (LSB), while the maximum integral non-linearity (INL) was 1 LSB. TFTs were used as switches in this architecture; as a result the performance was quite unchanged even as the TFTs degraded. A 5 bit fully flash ADC was also designed using all nMOS a-Si:H TFTs. Gray coding was implemented at the output to avoid errors due to comparator meta-stability. Finally a 5 bit current steering DAC was also built using all nMOS a-Si:H TFTs. However, due to process variation, the DNL was increased to 1.2 while the INL was about 1.8 LSB. Measurements were made on the external stress effects on zinc indium oxide (ZIO) TFTs. Electrically induced stresses were studied applying DC bias on the gate and drain. These stresses shifted the device characteristics like threshold voltage and mobility. The TFTs were then mechanically stressed by stretching them across cylindrical structures of various radii. Both the subthreshold swing and mobility underwent significant changes when the stress was tensile while the change was minor under compressive stress, applied parallel to channel length.
ContributorsDey, Aritra (Author) / Allee, David R. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Garrity, Douglas A (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence T (Committee member) / Arizona State University (Publisher)
Created2011
150113-Thumbnail Image.png
Description
A low temperature amorphous oxide thin film transistor (TFT) backplane technology for flexible organic light emitting diode (OLED) displays has been developed to create 4.1-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide

A low temperature amorphous oxide thin film transistor (TFT) backplane technology for flexible organic light emitting diode (OLED) displays has been developed to create 4.1-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication of white organic light emitting diode (OLED) displays. Mixed oxide semiconductor thin film transistors (TFTs) on flexible plastic substrates typically suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer enables significant improvements in both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment in the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible colorless plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors.
ContributorsMarrs, Michael (Author) / Raupp, Gregory B (Thesis advisor) / Vogt, Bryan D (Thesis advisor) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2011
151102-Thumbnail Image.png
Description
The field of flexible displays and electronics gained a big momentum within the recent years due to their ruggedness, thinness, and flexibility as well as low cost large area manufacturability. Amorphous silicon has been the dominant material used in the thin film transistor industry which could only utilize it as

The field of flexible displays and electronics gained a big momentum within the recent years due to their ruggedness, thinness, and flexibility as well as low cost large area manufacturability. Amorphous silicon has been the dominant material used in the thin film transistor industry which could only utilize it as N type thin film transistors (TFT). Amorphous silicon is an unstable material for low temperature manufacturing process and having only one kind of transistor means high power consumption for circuit operations. This thesis covers the three major researches done on flexible TFTs and flexible electronic circuits. First the characterization of both amorphous silicon TFTs and newly emerging mixed oxide TFTs were performed and the stability of these two materials is compared. During the research, both TFTs were stress tested under various biasing conditions and the threshold voltage was extracted to observe the shift in the threshold which shows the degradation of the material. Secondly, the design of the first flexible CMOS TFTs and CMOS gates were covered. The circuits were built using both inorganic and organic components (for nMOS and pMOS transistors respectively) and functionality tests were performed on basic gates like inverter, NAND and NOR gates and the working results are documented. Thirdly, a novel large area sensor structure is demonstrated under the Electronic Textile project section. This project is based on the concept that all the flexible electronics are flexible in only one direction and can not be used for conforming irregular shaped objects or create an electronic cloth for various applications like display or sensing. A laser detector sensor array is designed for proof of concept and is laid in strips that can be cut after manufacturing and weaved to each other to create a real flexible electronic textile. The circuit designed uses a unique architecture that pushes the data in a single line and reads the data from the same line and compares the signal to the original state to determine a sensor excitation. This architecture enables 2 dimensional addressing through an external controller while eliminating the need for 2 dimensional active matrix style electrical connections between the fibers.
ContributorsKaftanoglu, Korhan (Author) / Allee, David R. (Thesis advisor) / Kozicki, Michael N (Committee member) / Holbert, Keith E. (Committee member) / Kaminski, Jann P (Committee member) / Arizona State University (Publisher)
Created2012
151217-Thumbnail Image.png
Description
Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain

Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain radiation environments without the use of special fabrication processes. This work focuses on the cache design for a high performance microprocessor. The design tries to mitigate radiation effects like SEE, on a commercial foundry 45 nm SOI process. The design has been ported from a previously done cache design at the 90 nm process node. The cache design is a 16 KB, 4 way set associative, write-through design that uses a no-write allocate policy. The cache has been tested to write and read at above 2 GHz at VDD = 0.9 V. Interleaved layout, parity protection, dual redundancy, and checking circuits are used in the design to achieve radiation hardness. High speed is accomplished through the use of dynamic circuits and short wiring routes wherever possible. Gated clocks and optimized wire connections are used to reduce power. Structured methodology is used to build up the entire cache.
ContributorsXavier, Jerin (Author) / Clark, Lawrence T (Thesis advisor) / Cao, Yu (Committee member) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2012
156785-Thumbnail Image.png
Description
The students of Arizona State University, under the mentorship of Dr George Karady, have been collaborating with Salt River Project (SRP), a major power utility in the state of Arizona, trying to study and optimize a battery-supported grid-tied rooftop Photovoltaic (PV) system, sold by a commercial vendor. SRP believes this

The students of Arizona State University, under the mentorship of Dr George Karady, have been collaborating with Salt River Project (SRP), a major power utility in the state of Arizona, trying to study and optimize a battery-supported grid-tied rooftop Photovoltaic (PV) system, sold by a commercial vendor. SRP believes this system has the potential to satisfy the needs of its customers, who opt for utilizing solar power to partially satisfy their power needs.

An important part of this elaborate project is the development of a new load forecasting algorithm and a better control strategy for the optimized utilization of the storage system. The built-in algorithm of this commercial unit uses simple forecasting and battery control strategies. With the recent improvement in Machine Learning (ML) techniques, development of a more sophisticated model of the problem in hand was possible. This research is aimed at achieving the goal by utilizing the appropriate ML techniques to better model the problem, which will essentially result in a better solution. In this research, a set of six unique features are used to model the load forecasting problem and different ML algorithms are simulated on the developed model. A similar approach is taken to solve the PV prediction problem. Finally, a very effective battery control strategy is built (utilizing the results of the load and PV forecasting), with the aim of ensuring a reduction in the amount of energy consumed from the grid during the “on-peak” hours. Apart from the reduction in the energy consumption, this battery control algorithm decelerates the “cycling aging” or the aging of the battery owing to the charge/dis-charges cycles endured by selectively charging/dis-charging the battery based on need.

ii

The results of this proposed strategy are verified using a hardware implementation (the PV system was coupled with a custom-built load bank and this setup was used to simulate a house). The results pertaining to the performances of the built-in algorithm and the ML algorithm are compared and the economic analysis is performed. The findings of this research have in the process of being published in a reputed journal.
ContributorsHariharan, Aashiek (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald Thomas (Committee member) / Qin, Jiangchao (Committee member) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2018
133352-Thumbnail Image.png
Description
The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and

The inherent risk in testing drugs has been hotly debated since the government first started regulating the drug industry in the early 1900s. Who can assume the risks associated with trying new pharmaceuticals is unclear when looked at through society's lens. In the mid twentieth century, the US Food and Drug Administration (FDA) published several guidance documents encouraging researchers to exclude women from early clinical drug research. The motivation to publish those documents and the subsequent guidance documents in which the FDA and other regulatory offices established their standpoints on women in drug research may have been connected to current events at the time. The problem of whether women should be involved in drug research is a question of who can assume risk and who is responsible for disseminating what specific kinds of information. The problem tends to be framed as one that juxtaposes the health of women and fetuses and sets their health as in opposition. That opposition, coupled with the inherent uncertainty in testing drugs, provides for a complex set of issues surrounding consent and access to information.
ContributorsMeek, Caroline Jane (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131507-Thumbnail Image.png
Description
As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have

As of 2019, 30 US states have adopted abortion-specific informed consent laws that require state health departments to develop and disseminate written informational materials to patients seeking an abortion. Abortion is the only medical procedure for which states dictate the content of informed consent counseling. State abortion counseling materials have been criticized for containing inaccurate and misleading information, but overall, informed consent laws for abortion do not often receive national attention. The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade. The “Women’s Right to Know Act” is part of a larger package of model legislation called the “Women’s Protection Project,” a cluster of laws that place restrictions on abortion providers, purportedly to protect women, but actually to decrease abortion access. “Women’s Right to Know” counseling laws do not directly deny access to abortion, but they do reinforce key ideas important to the anti-abortion movement, like the concept of fetal personhood, distrust in medical professionals, the belief that pregnant people cannot be fully autonomous individuals, and the belief that abortion is not an ordinary medical procedure and requires special government oversight. “Women’s Right to Know” laws use the language of informed consent and the purported goal of protecting women to legitimize those ideas, and in doing so, they significantly undermine the right to abortion. The threat to abortion rights posed by laws like the “Women’s Right to Know” laws indicates the need to reevaluate and strengthen our ethical defense of the right to abortion.
ContributorsVenkatraman, Richa (Author) / Maienschein, Jane (Thesis director) / Brian, Jennifer (Thesis director) / Abboud, Carolina (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05