Matching Items (76)
157771-Thumbnail Image.png
Description
At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining

At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining safety and high throughput. To improve the efficiency of the existing traffic network and mitigate the effects of human error in the intersection, many studies have proposed autonomous, intelligent transportation systems. These studies often involve utilizing connected autonomous vehicles, implementing a supervisory system, or both. Implementing a supervisory system is relatively more popular due to the security concerns of vehicle-to-vehicle communication. Even though supervisory systems are a step in the right direction for security, many supervisory systems’ safe operation solely relies on the promise of connected data being correct, making system reliability difficult to achieve. To increase fault-tolerance and decrease the effects of position uncertainty, this thesis proposes the Reliable and Robust Intersection Manager, a supervisory system that uses a separate surveillance system to dependably detect vehicles present in the intersection in order to create data redundancy for more accurate scheduling of connected autonomous vehicles. Adding the Surveillance System ensures that the temporal safety buffers between arrival times of connected autonomous vehicles are maintained. This guarantees that connected autonomous vehicles can traverse the intersection safely in the event of large vehicle controller error, a single rogue car entering the intersection, or a sybil attack. To test the proposed system given these fault-models, MATLAB® was used to create simulations in order to observe the functionality of R2IM compared to the state-of-the-art supervisory system, Robust Intersection Manager. Though R2IM is less efficient than the Robust Intersection Manager, it considers more fault models. The Robust Intersection Manager failed to maintain safety in the event of large vehicle controller errors and rogue cars, however R2IM resulted in zero collisions.
ContributorsDedinsky, Rachel (Author) / Shrivastava, Aviral (Thesis advisor) / Sen, Arunabha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2019
157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
ContributorsYu, Ruozhou, Ph.D (Author) / Xue, Guoliang (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019
157682-Thumbnail Image.png
Description
Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could

Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could predict the trends in the NYSE and NASDAQ stock markets for ten different companies, nine of which are part of the Dow Jones Industrial Average (DJIA). A novel deep learning model which uses a Generative Adversarial Network (GAN) is used to predict future data and the results are compared with the existing regression techniques like Linear, Huber, and Ridge regression and neural network models such as Long-Short Term Memory (LSTMs) models.

In this thesis, the Opioid Incident Prediction Problem investigates methods which could predict the location of future opioid overdose incidences using the past opioid overdose incidences data. A similar deep learning model is used to predict the location of the future overdose incidences given the two datasets of the past incidences (Connecticut and Cincinnati Opioid incidence datasets) and compared with the existing neural network models such as Convolution LSTMs, Attention-based Convolution LSTMs, and Encoder-Decoder frameworks. Experimental results on the above-mentioned datasets for both the problems show the superiority of the proposed architectures over the standard statistical models.
ContributorsThomas, Kevin, M.S (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2019
158005-Thumbnail Image.png
Description
The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have

The traditional access control system suffers from the problem of separation of data ownership and management. It poses data security issues in application scenarios such as cloud computing and blockchain where the data owners either do not trust the data storage provider or even do not know who would have access to their data once they are appended to the chain. In these scenarios, the data owner actually loses control of the data once they are uploaded to the outside storage. Encryption-before-uploading is the way to solve this issue, however traditional encryption schemes such as AES, RSA, ECC, bring about great overheads in key management on the data owner end and could not provide fine-grained access control as well.

Attribute-Based Encryption (ABE) is a cryptographic way to implement attribute-based access control, which is a fine-grained access control model, thus solving all aforementioned issues. With ABE, the data owner would encrypt the data by a self-defined access control policy before uploading the data. The access control policy is an AND-OR boolean formula over attributes. Only users with attributes that satisfy the access control policy could decrypt the ciphertext. However the existing ABE schemes do not provide some important features in practical applications, e.g., user revocation and attribute expiration. Furthermore, most existing work focus on how to use ABE to protect cloud stored data, while not the blockchain applications.

The main objective of this thesis is to provide solutions to add two important features of the ABE schemes, i.e., user revocation and attribute expiration, and also provide a practical trust framework for using ABE to protect blockchain data. To add the feature of user revocation, I propose to add user's hierarchical identity into the private attribute key. In this way, only users whose identity is not revoked and attributes satisfy the access control policy could decrypt the ciphertext. To add the feature of attribute expiration, I propose to add the attribute valid time period into the private attribute key. The data would be encrypted by access control policy where all attributes have a temporal value. In this way, only users whose attributes both satisfy the access policy and at the same time these attributes do not expire,

are allowed to decrypt the ciphertext. To use ABE in the blockchain applications, I propose an ABE-enabled trust framework in a very popular blockchain platform, Hyperledger Fabric. Based on the design, I implement a light-weight attribute certificate authority for attribute distribution and validation; I implement the proposed ABE schemes and provide a toolkit which supports system setup, key generation,

data encryption and data decryption. All these modules were integrated into a demo system for protecting sensitive les in a blockchain application.
ContributorsDong, Qiuxiang (Author) / Huang, Dijiang (Thesis advisor) / Sen, Arunabha (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2020
158099-Thumbnail Image.png
Description
Social links form the backbone of human interactions, both in an offline and online world. Such interactions harbor network diffusion or in simpler words, information spreading in a population of connected individuals. With recent increase in user engagement in social media platforms thus giving rise to networks of large scale,

Social links form the backbone of human interactions, both in an offline and online world. Such interactions harbor network diffusion or in simpler words, information spreading in a population of connected individuals. With recent increase in user engagement in social media platforms thus giving rise to networks of large scale, it has become imperative to understand the diffusion mechanisms by considering evolving instances of these network structures. Additionally, I claim that human connections fluctuate over time and attempt to study empirically grounded models of diffusion that embody these variations through evolving network structures. Patterns of interactions that are now stimulated by these fluctuating connections can be harnessed

towards predicting real world events. This dissertation attempts at analyzing

and then modeling such patterns of social network interactions. I propose how such

models could be used in advantage over traditional models of diffusion in various

predictions and simulations of real world events.

The specific three questions rooted in understanding social network interactions that have been addressed in this dissertation are: (1) can interactions captured through evolving diffusion networks indicate and predict the phase changes in a diffusion process? (2) can patterns and models of interactions in hacker forums be used in cyber-attack predictions in the real world? and (3) do varying patterns of social influence impact behavior adoption with different success ratios and could they be used to simulate rumor diffusion?

For the first question, I empirically analyze information cascades of Twitter and Flixster data and conclude that in evolving network structures characterizing diffusion, local network neighborhood surrounding a user is particularly a better indicator of the approaching phases. For the second question, I attempt to build an integrated approach utilizing unconventional signals from the "darkweb" forum discussions for predicting attacks on a target organization. The study finds that filtering out credible users and measuring network features surrounding them can be good indicators of an impending attack. For the third question, I develop an experimental framework in a controlled environment to understand how individuals respond to peer behavior in situations of sequential decision making and develop data-driven agent based models towards simulating rumor diffusion.
ContributorsSarkar, Soumajyoti (Author) / Shakarian, Paulo (Thesis advisor) / Liu, Huan (Committee member) / Lakkaraju, Kiran (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2020
157919-Thumbnail Image.png
Description
Due to the rapid penetration of solar power systems in residential areas, there has

been a dramatic increase in bidirectional power flow. Such a phenomenon of bidirectional

power flow creates a need to know where Photovoltaic (PV) systems are

located, what their quantity is, and how much they generate. However, significant

challenges exist for

Due to the rapid penetration of solar power systems in residential areas, there has

been a dramatic increase in bidirectional power flow. Such a phenomenon of bidirectional

power flow creates a need to know where Photovoltaic (PV) systems are

located, what their quantity is, and how much they generate. However, significant

challenges exist for accurate solar panel detection, capacity quantification,

and generation estimation by employing existing methods, because of the limited

labeled ground truth and relatively poor performance for direct supervised learning.

To mitigate these issue, this thesis revolutionizes key learning concepts to (1)

largely increase the volume of training data set and expand the labelled data set by

creating highly realistic solar panel images, (2) boost detection and quantification

learning through physical knowledge and (3) greatly enhance the generation estimation

capability by utilizing effective features and neighboring generation patterns.

These techniques not only reshape the machine learning methods in the GIS

domain but also provides a highly accurate solution to gain a better understanding

of distribution networks with high PV penetration. The numerical

validation and performance evaluation establishes the high accuracy and scalability

of the proposed methodologies on the existing solar power systems in the

Southwest region of the United States of America. The distribution and transmission

networks both have primitive control methodologies, but now is the high time

to work out intelligent control schemes based on reinforcement learning and show

that they can not only perform well but also have the ability to adapt to the changing

environments. This thesis proposes a sequence task-based learning method to

create an agent that can learn to come up with the best action set that can overcome

the issues of transient over-voltage.
ContributorsHashmy, Syed Muhammad Yousaf (Author) / Weng, Yang (Thesis advisor) / Sen, Arunabha (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019
158392-Thumbnail Image.png
Description
The development of the internet provided new means for people to communicate effectively and share their ideas. There has been a decline in the consumption of newspapers and traditional broadcasting media toward online social mediums in recent years. Social media has been introduced as a new way of increasing democratic

The development of the internet provided new means for people to communicate effectively and share their ideas. There has been a decline in the consumption of newspapers and traditional broadcasting media toward online social mediums in recent years. Social media has been introduced as a new way of increasing democratic discussions on political and social matters. Among social media, Twitter is widely used by politicians, government officials, communities, and parties to make announcements and reach their voice to their followers. This greatly increases the acceptance domain of the medium.

The usage of social media during social and political campaigns has been the subject of a lot of social science studies including the Occupy Wall Street movement, The Arab Spring, the United States (US) election, more recently The Brexit campaign. The wide

spread usage of social media in this space and the active participation of people in the discussions on social media made this communication channel a suitable place for spreading propaganda to alter public opinion.

An interesting feature of twitter is the feasibility of which bots can be programmed to operate on this platform. Social media bots are automated agents engineered to emulate the activity of a human being by tweeting some specific content, replying to users, magnifying certain topics by retweeting them. Network on these bots is called botnets and describing the collaboration of connected computers with programs that communicates across multiple devices to perform some task.

In this thesis, I will study how bots can influence the opinion, finding which parameters are playing a role in shrinking or coalescing the communities, and finally logically proving the effectiveness of each of the hypotheses.
ContributorsAhmadi, Mohsen (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
158544-Thumbnail Image.png
Description
This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum throughput -- to satisfy their demands.

This thesis addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated n-node directed network and a set of k commodities, with source-destination pairs (s_i,t_i) and demands d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum throughput -- to satisfy their demands.

The main contributions of this thesis are three-fold: First, a bi-criteria approximation algorithm is presented for this all-or-nothing multicommodity flow (ANF) problem. This algorithm is the first to achieve a constant approximation of the maximum throughput with an edge capacity violation ratio that is at most logarithmic in n, with high probability. The approach used is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows it to work for arbitrary directed edge-capacitated graphs, unlike most of the prior work on the ANF problem. The algorithm also works if a weighted throughput is considered, where the benefit gained by fully satisfying the demand for commodity i is determined by a given weight w_i>0. Second, a derandomization of the algorithm is presented that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, it is shown how the framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. Lastly, one important aspect of the randomized and derandomized algorithms is their simplicity, which lends to efficient implementations in practice. The implementations of both randomized rounding and derandomized algorithms for the ANF problem are presented and show their efficiency in practice.
ContributorsChaturvedi, Anya (Author) / Richa, Andréa W. (Thesis advisor) / Sen, Arunabha (Committee member) / Schmid, Stefan (Committee member) / Arizona State University (Publisher)
Created2020
158517-Thumbnail Image.png
Description
In the recent times, traffic congestion and motor accidents have been a major problem for transportation in major cities. Intelligent Transportation Systems has the potential to be an effective solution in order to tackle this issue. Connected Autonomous Vehicles can cooperate at intersections, ramp merging, lane change and other conflicting

In the recent times, traffic congestion and motor accidents have been a major problem for transportation in major cities. Intelligent Transportation Systems has the potential to be an effective solution in order to tackle this issue. Connected Autonomous Vehicles can cooperate at intersections, ramp merging, lane change and other conflicting scenarios in order to resolve the conflicts and avoid collisions with other vehicles. A lot of works has been proposed for specific scenarios such as intersections, ramp merging or lane change which partially solve the conflict resolution problem. Also, one of the major issues in autonomous decision making - deadlocks have not been considered in some of the works. The existing works either do not consider deadlocks or lack a safety proof. This thesis proposes a cooperative driving solution that provides a complete navigation, conflict resolution and deadlock resolution for connected autonomous vehicles. A graph-based model is used to resolve the deadlocks between vehicles and the responsibility sensitive safety (RSS) rules have been used in order to ensure safety of the autonomous vehicles during conflict detection and resolution. This algorithm provides a complete navigation solution for an autonomous vehicle from its source to destination. The algorithm ensures that accidents do not occur even in the worst-case scenario and the decision making is deadlock free.
ContributorsAllamsetti, Harshith (Author) / Shrivastava, Aviral (Thesis advisor) / Sen, Arunabha (Committee member) / Ren, Fengbo (Committee member) / Arizona State University (Publisher)
Created2020
158314-Thumbnail Image.png
Description
The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has

The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.

It is well known that the coloring number is an upper bound for the

chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is

a generalization of the coloring number, and it was first introduced

by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$

is the minimum integer $k$ such that for some linear ordering $L$

of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller

vertices $u$ (with respect to $L$) with a path of length at most

$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.

The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$

is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$

if and only if the distance between $x$ and $y$ in $G$ is $3$.

This dissertation improves the best known upper bound of the

chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$

of planar graphs $G$, which is $105$, to $95$. It also improves

the best known lower bound, which is $7$, to $9$.

A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.
ContributorsAlmulhim, Ahlam (Author) / Kierstead, Henry (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2020