Matching Items (2)
129084-Thumbnail Image.png
Description

Background: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scalec linical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise

Background: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scalec linical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise only about 0.2% of gastrointestinal cancers. Consequently, they are often treated as either distal common bile duct or pancreatic cancers.

Methods: We analyzed DNA from a resected cancer of the ampulla of Vater and whole blood DNAfrom a 63 year-old man who underwent a pancreaticoduodenectomy by whole genomesequencing, achieving 37× and 40× coverage, respectively. We determined somatic mutations and structural alterations.

Results: We identified relevant aberrations, including deleterious mutations of KRAS and SMAD4 as well as a homozygous focal deletion of the PTEN tumor suppressor gene. These findings suggest that these tumors have a distinct oncogenesis from either common bile duct cancer or pancreatic cancer. Furthermore, this combination of genomic aberrations suggests a therapeutic context for dual mTOR/PI3K inhibition.

Conclusions: Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers.

ContributorsDemeure, Michael J. (Author) / Craig, David W. (Author) / Sinari, Shripad (Author) / Moses, Tracy M. (Author) / Christoforides, Alexis (Author) / Dinh, Jennifer (Author) / Izatt, Tyler (Author) / Aldrich, Jessica (Author) / Decker, Ardis (Author) / Baker, Angela (Author) / Cherni, Irene (Author) / Watanabe, April (Author) / Koep, Lawrence (Author) / Lake, Douglas (Author) / Hostetter, Galen (Author) / Trent, Jeffrey M. (Author) / Von Hoff, Daniel D. (Author) / Carpten, John D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-07-04
128865-Thumbnail Image.png
Description

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.

ContributorsLiang, Winnie S. (Author) / Craig, David W. (Author) / Carpten, John (Author) / Borad, Mitesh J. (Author) / Demeure, Michael J. (Author) / Weiss, Glen J. (Author) / Izatt, Tyler (Author) / Sinari, Shripad (Author) / Christoforides, Alexis (Author) / Aldrich, Jessica (Author) / Kurdoglu, Ahmet (Author) / Barrett, Michael (Author) / Phillips, Lori (Author) / Benson, Hollie (Author) / Tembe, Waibhav (Author) / Braggio, Esteban (Author) / Kiefer, Jeffrey A. (Author) / Legendre, Christophe (Author) / Posner, Richard (Author) / Hostetter, Galen H. (Author) / Baker, Angela (Author) / Egan, Jan B. (Author) / Han, Haiyong (Author) / Lake, Douglas (Author) / Stites, Edward C. (Author) / Ramanathan, Ramesh K. (Author) / Fonseca, Rafael (Author) / Stewart, A. Keith (Author) / Von Hoff, Daniel (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-10-10