Matching Items (5)
Filtering by

Clear all filters

147646-Thumbnail Image.png
Description

Background: Household activities are responsible for up to 80% of direct and indirect greenhouse gas emissions in the United States. These greenhouse gas emissions come from activities including actions taken in relation to food, energy, and water (FEW) resource consumption. Therefore, actions taken at a household level have the potential

Background: Household activities are responsible for up to 80% of direct and indirect greenhouse gas emissions in the United States. These greenhouse gas emissions come from activities including actions taken in relation to food, energy, and water (FEW) resource consumption. Therefore, actions taken at a household level have the potential to significantly reduce greenhouse gas emissions. A game-based learning approach can be used to educate youth on what actions they can take around their household to reduce their carbon footprint. <br/>Aim: FEWS for change is a first player role-playing game developed to educate high school students on how their actions impact the FEW resources and carbon emissions. The game also aims to measure how player’s beliefs and worldview effect their game play regarding sustainability and the environment. <br/>Methods: We developed the FEWS (Food, Energy, and Water Systems) for Change role-playing game based on transdisciplinary research of the food, energy, and water nexus, social, economic, and environmental factors. We piloted the game with a few students for initial results and will have a high school classroom pilot the game in mid-May.<br/>Preliminary Results: Results from the 4 participants demonstrated achievement of the learning goal of the pilot testing. This is objective was met by measuring the players improvement on the postsurvey compared to the presurvey. Due to limitations of time and virtual facilitation of this game, the other two learning objectives could not be measured in this initial pilot because not all post-game activities were included which are needed to measure the other learning objectives. When the game is piloted in mid-May, the other two learning objectives will be tested and measured.

ContributorsFielding, Raven (Author) / Agusdinata, Datu Buyung (Thesis director) / Lukosch, Heide (Committee member) / School of Sustainability (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis conducted an evaluation of the performance and return on investment of a 2 x 6m, simple design greenhouse, as a climate control technology. Specifically, differences in internal microclimate conditions between a greenhouse treatment plot, and sun and shaded control plots were assessed and related to observed differences in

This thesis conducted an evaluation of the performance and return on investment of a 2 x 6m, simple design greenhouse, as a climate control technology. Specifically, differences in internal microclimate conditions between a greenhouse treatment plot, and sun and shaded control plots were assessed and related to observed differences in crop yields across these plots. Growing conditions and productivity of two crops, tomato and swiss chard, which were grown over summer and winter growing seasons, respectively, were compared. It was found that the greenhouse was associated with improved growth conditions (as measured by the R-Index) for both crops but resulted in higher productivity only for tomatoes. Return on investment and food security impacts from the scaling of greenhouse agriculture were also explored.

ContributorsKline, Jarod Neale (Author) / Aggarwal, Rimjhim (Thesis director) / Agusdinata, Datu Buyung (Committee member) / Vanos, Jennifer K. (Committee member) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130892-Thumbnail Image.png
Description
Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human

Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human health risks, thus signaling a need for more sustainable methods of sourcing. This research aims to compare the impact and effectiveness of three recycling processes for decommissioned NdFeB magnets sourced from end-of-life wind turbines, as well as consider strategies for developing these processes on an industrial scale. A material flow analysis (MFA) has been conducted to determine comparable input and output factors for two types of laboratory-scale recycling methods, molten salt electrolysis and hydrometallurgy, and one industrial-scale method, magnet-to-magnet. Following this, an impact analysis of potential industrial level magnet recycling operations for molten salt electrolysis and hydrometallurgy was conducted. The results show that molten salt electrolysis had the highest levels of impact for global warming, ozone depletion, and energy usage of the three methods when scaled on an industrial level. Hydrometallurgy had relatively low energy usage and emissions impacts but required large amounts of water and produced high levels of wastewater. The magnet-to-magnet process showed promising impact results in comparison with the alternate two methods, but further development needs to be done to circumvent the continued use of virgin REE in the final production steps for novel magnets. Overall, it is recommended that locations of recycling operations should be pursued for each process relative to energy and water usage needs, as well as transportation distance from wind farms.
ContributorsSavel, Cassandra Deanne (Author) / Agusdinata, Datu Buyung (Thesis director) / Iloeje, Nwike (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
168511-Thumbnail Image.png
Description
The consumption of food, energy, and water (FEW) resources in U.S. households is very carbon-intensive. However, these negative climate change impacts are often invisible due to insufficient awareness and knowledge. Serious games (SGs) can potentially address this issue through an experiential and rigorous approach to simulate household actions and impacts

The consumption of food, energy, and water (FEW) resources in U.S. households is very carbon-intensive. However, these negative climate change impacts are often invisible due to insufficient awareness and knowledge. Serious games (SGs) can potentially address this issue through an experiential and rigorous approach to simulate household actions and impacts in a playful but realistic setting. This dissertation focuses on: (a) the design and testing of an SG called HomeRUN (Role-play for Understanding Nexus); (b) the effectiveness of gameplay in advancing player knowledge about the upfront costs, financial returns, and greenhouse gas (GHG) emissions of various household decisions; and (c) the effectiveness of intervention messages in increasing FEW conservation to reduce household GHG emissions. The results of gameplay sessions played by 150 university students show that HomeRUN is fun to play, creates a flow experience, and results in experiential learning. The majority of players agreed that the game experience will continue over time to influence their future consumption behaviors to conserve FEW resources. Female players tended to gain more knowledge about financial aspects of interventions, whereas male players were more likely to increase their understandings of GHG emissions and resource consumption after playing HomeRUN. Social comparison intervention messages about energy and food consumption led to the highest reductions in household carbon emissions. The messages associated with each FEW resource tended to be most likely to lead to FEW conservation actions with the game that most closely corresponded to the particular FEW resource addressed in the message. This dissertation advances understandings about the design and use of SGs to foster learning and promote sustainable household FEW consumption.
ContributorsHanif, Muhammad Adnan (Author) / Agusdinata, Datu Buyung (Thesis advisor) / Halvorsen, Kathleen (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2021
126661-Thumbnail Image.png
Description

Institutional factors are rarely examined in disaster risks in the Himalayan region, as much of the focus so far has been on improving the scientific understanding of the natural hazards and risks. This is particularly true for glacial lake outburst floods (GLOFs), which are natural hazards endemic to high mountain

Institutional factors are rarely examined in disaster risks in the Himalayan region, as much of the focus so far has been on improving the scientific understanding of the natural hazards and risks. This is particularly true for glacial lake outburst floods (GLOFs), which are natural hazards endemic to high mountain ranges such as the Andes, Alps, and Himalayas. While these have put mountain communities at risk for centuries, vulnerability is viewed to be increasing due to climate change. While the science behind the causes and characteristics of these hazards is now better understood, there is an absence of research understanding the social, cultural and institutional drivers behind creating effective strategies to mitigate risks from GLOFs. This is more so for the Himalayan region, where institutions have recently started to address this risk, but contention between local communities and external organizations can hinder mitigation efforts. To better understand how people’s perception towards disaster risk, a study conducted by Sherpa et al. (2019) examined the socio-economic and cultural perceptions surrounding GLOF hazards.

This research highlighted gaps in how scientific knowledge is disseminated to local communities, and the resulting distrust in government mitigation projects such as lake lowering and Early Warning Systems. A clear need developed to conduct an institutional analysis of the governance systems responsible for disaster risk management and their interaction with local communities. This study examines the institutional conditions under which mountain communities create effective adaptation strategies to address climate induced hazards. We use a mixed-methods approach, combining: a) quantitative analysis of household surveys collected in 2016-2017 and b) qualitative analysis that maps out the various factors of institutions that influence the success of community-based adaptation efforts. Additionally, GLOF case studies from Nepal are compared to those in Peru, where institutions have a longer history of managing GLOF risks. The research finds that there are several considerations including: lack of cross-scalar communication networks, lack of local knowledge and participation in policy processes, and ineffective interorganizational coordination of knowledge sharing and funding streams for local projects. This disconnect between external versus local and informal institutions becomes an inherent issue in projects where agenda setting by external organizations plays prevalent roles in project implementation.

ContributorsThompson, Ian (Author) / Shrestha, Milan (Contributor, Contributor) / Chhetri, Netra (Contributor, Contributor) / Agusdinata, Datu Buyung (Contributor)
Created2019-04-26