Matching Items (25)
151558-Thumbnail Image.png
Description
Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods

Monte Carlo methods often used in nuclear physics, such as auxiliary field diffusion Monte Carlo and Green's function Monte Carlo, have typically relied on phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model or coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are typically defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods are complicated by the use of different potentials. This thesis discusses progress made in using such non-local potentials in quantum Monte Carlo calculations of light nuclei. In particular, it shows methods for evaluating the real-space, imaginary-time propagators needed to perform quantum Monte Carlo calculations using non-local potentials and universality properties of these propagators, how to formulate a good trial wave function for non-local potentials, and how to perform a "one-step" Green's function Monte Carlo calculation for non-local potentials.
ContributorsLynn, Joel E (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shovkovy, Igor (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151412-Thumbnail Image.png
Description
The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09

The theory of quantum electrodynamics predicts that beta decay of the neutron into a proton, electron, and anti-neutrino should be accompanied by a continuous spectrum of photons. A recent experiment, RDK I, reported the first detection of radiative decay photons from neutron beta decay with a branching ratio of (3.09 ± 0.32) × 10-3 in the energy range of 15 keV to 340 keV. This was achieved by prompt coincident detection of an electron and photon, in delayed coincidence with a proton. The photons were detected by using a single bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode. This thesis deals with the follow-up experiment, RDK II, to measure the branching ratio at the level of approximately 1% and the energy spectrum at the level of a few percent. The most significant improvement of RDK II is the use of a photon detector with about an order of magnitude greater solid angle coverage than RDK I. In addition, the detectable energy range has been extended down to approximately 250 eV and up to the endpoint energy of 782 keV. This dissertation presents an overview of the apparatus, development of a new data analysis technique for radiative decay, and results for the ratio of electron-proton-photon coincident Repg to electron-proton coincident Rep events.
ContributorsO'Neill, Benjamin (Author) / Alarcon, Ricardo (Thesis advisor) / Drucker, Jeffery (Committee member) / Lebed, Richard (Committee member) / Comfort, Joseph (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2012
153101-Thumbnail Image.png
Description
Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be

Spin-orbit interactions are important in determining nuclear structure. They lead to a shift in the energy levels in the nuclear shell model, which could explain the sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large nucleon polarization observed perpendicular to the plane of scattering needs to be explained by adding the spin-orbit interactions in the potential. Their effects change the equation of state and other properties of nuclear matter. Therefore, the simulation of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method for calculating the ground state and low-lying exited states in nuclei and nuclear matter. It has successfully employed the Argonne v6' two-body potential to calculate the equation of state in nuclear matter, and has been applied to light nuclei with reasonable agreement with experimental results. However, the spin-orbit interactions were not included in the previous simulations, because the isospin-dependent spin-orbit potential is difficult in the quantum Monte Carlo method. This work develops a new method using extra auxiliary fields to break up the interactions between nucleons, so that the spin-orbit interaction with isospin can be included in the Hamiltonian, and ground-state energy and other properties can be obtained.
ContributorsZhang, Jie (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2014
150316-Thumbnail Image.png
Description
The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been

The nucleon resonance spectrum consists of many overlapping excitations. Polarization observables are an important tool for understanding and clarifying these spectra. While there is a large data base of differential cross sections for the process, very few data exist for polarization observables. A program of double polarization experiments has been conducted at Jefferson Lab using a tagged polarized photon beam and a frozen spin polarized target (FROST). The results presented here were taken during the first running period of FROST using the CLAS detector at Jefferson Lab with photon energies ranging from 329 MeV to 2.35 GeV. Data are presented for the E polarization observable for eta meson photoproduction on the proton from threshold (W=1500 MeV) to W=1900 MeV. Comparisons to the partial wave analyses of SAID and Bonn-Gatchina along with the isobar analysis of eta-MAID are made. These results will help distinguish between current theoretical predictions and refine future theories.
ContributorsMorrison, Brian (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Shovkovy, Igor (Committee member) / Davies, Paul (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2011
150570-Thumbnail Image.png
Description
Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field

Quark matter at sufficiently high density and low temperature is expected to be a color superconductor, and may exist in the interior of neutron stars. The properties of two simplest possible color-superconducting phases, i.e., the color-flavor-locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The effect of a magnetic field on the pairing dynamics in two-flavor color-superconducting dense quark matter is investigated. A universal form of the gap equation for an arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymptotically high density, using the framework of Schwinger-Dyson equation in the improved rainbow approximation. The results for the gap in two limiting cases, weak and strong magnetic fields, are obtained and discussed. It is shown that the superconducting gap function in the weak magnetic field limit develops a directional dependence in momentum space. This property of the gap parameter is argued to be a consequence of a long-range interaction in QCD.
ContributorsYu, Lang (Author) / Shovkovy, Igor A. (Thesis advisor) / Lunardini, Cecilia (Committee member) / Schmidt, Kevin (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2012
150432-Thumbnail Image.png
Description
In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and

In this thesis a new method based on the Tight-Binding Linear Muffin Tin Orbital (TB-LMTO) formalism and the Quasiparticle Self-consistent GW (QSGW) approximation is proposed. The method is capable of generating accurate electronic bands structure of large supercells necessary to model alloys structures. The strategy consist in building simple and small hamiltonian from linear Muffin-tin-orbitals (LMTO). Parameters in this hamiltonian are then used to fit the difference in QSGW self-energies and LDA exchange-correlation potentials. The parameter are assumed to transfer to new environments --- a procedure we check carefully by comparing our predicted band to QSGW bands for small supercells. The method possess both the accuracy of the QSGW approximation, (which is the most reliable way to determine energy bands accurately, and yet too expensive for the large supercells required here), and the efficiency of the TB-LMTO method. The accurate and highly efficient hamiltonian is used to predict the electronic and optical transitions of Si1-xGex alloys and SnxSiyGe1-x-y alloys. The goal is to engineer direct band gap material compatible with the silicon technology. The results obtained are compared to available experimental data.
ContributorsDonfack, Hermann Azemtsa (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Dow, John D. (Thesis advisor) / Ponce, Fernando (Committee member) / Ritchie, Barry (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2011
133498-Thumbnail Image.png
Description
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the

A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolve the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 1575 MeV with polar angle values of cos(theta) between -0.8 and 0.9 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting neutron yields from gamma p -> pi^+ n over azimuthal scattering angle, the observables \H and P have been extracted. These observables manifest as azimuthal modulations in the yields for the double-polarization experiment. Preliminary results for these observables will be presented and compared with predictions provided by the SAID Partial-Wave Analysis Facility.
ContributorsLee, Robert John (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154451-Thumbnail Image.png
Description
A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a

A series of experiments using a polarized beam incident on a polarized frozen spin target

(FROST) was conducted at Jefferson Lab in 2010. Results presented here were taken

during the second running period with the FROST target using the CEBAF Large Acceptance

Spectrometer (CLAS) detector at Jefferson Lab, which used transversely-polarized

protons in a butanol target and a circularly-polarized incident tagged photon beam with

energies between 0.62 and 2.93 GeV. Data are presented for the F and T polarization observables

for h meson photoproduction on the proton from W = 1.55 GeV to 1.80 GeV.

The data presented here will improve the world database and refine theoretical approaches

of nucleon structure.
ContributorsTucker, Ross (Author) / Ritchie, Barry (Thesis advisor) / Dugger, Michael (Committee member) / Alarcon, Ricardo (Committee member) / Lebed, Richard (Committee member) / Arizona State University (Publisher)
Created2016
154297-Thumbnail Image.png
Description
In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents.

In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents. The second chapter is then devoted to a detailed phenomenological study of the Virtual Compton Scattering (VCS) process, where a more comprehensive parametrization is suggested. In the third chapter, the renormalization kernels that enters the QCD evolution equations at twist- 4 accuracy are computed in terms of Feynman diagrams in momentum space, which can be viewed as an extension of the work by Bukhvostov, Frolov, Lipatov, and Kuraev (BKLK). The results can be used for determining the QCD background interaction for future precision measurements.
ContributorsJi, Yao, Ph. D (Author) / Belitsky, Andrei (Thesis advisor) / Lebed, Richard (Committee member) / Schmidt, Kevin E (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2016
154468-Thumbnail Image.png
Description
In the first part of this thesis, we use the generalized Landau-level represen-

tation to study the effect of screening on the properties of the graphene quantum Hall states with integer filling factors. The analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range Coulomb

In the first part of this thesis, we use the generalized Landau-level represen-

tation to study the effect of screening on the properties of the graphene quantum Hall states with integer filling factors. The analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range Coulomb in- teraction is modified by the one-loop static screening effects. The solutions demon- strate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken U (4) flavor symmetry. The results of the temperature dependence of the energy gaps mimic well the temperature dependence of the activation energies measured in experiment. The Landau-level running of the quasiparticle dynamical parameters could be tested via optical studies of the integer quantum Hall states.

In the second part, by using the generalized Landau-level representation, we study the interaction induced chiral asymmetry in cold QED plasma beyond the weak-field approximation. The chiral shift and the parity-even chiral chemical potential function are obtained numerically and are found peaking near the Fermi surface and increases and decreases with the Landau level index, respectively. The results are used to quantify the chiral asymmetry of the Fermi surface in dense QED matter. The chiral asymmetry appears to be rather small even in the strongest mag- netic fields and at the highest stellar densities. However, the analogous asymmetry can be substantial in the case of dense quark matter.
ContributorsXia, Lifang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Lebed, Richard (Committee member) / Schmidt, Kevin (Committee member) / Damien, Easson (Committee member) / Arizona State University (Publisher)
Created2016