Matching Items (34)
153947-Thumbnail Image.png
Description
Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea

Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.

This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.
ContributorsHan, Dongmin (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2015
157458-Thumbnail Image.png
Description
This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds

This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds Stresses at various phases of the flow is provided along with probability density functions of the fluctuating components of velocity and vorticity. The flow is also visualized to observe, qualitatively, changes in the total and fluctuating field of velocity and vorticity. Linear Stochastic Estimation is used to create a conditional eddy (associated with stress production) in the flow and visualize the effects of transverse wall oscillations on hairpin growth, auto-generation and structure.
ContributorsCoxe, Daniel (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Thesis advisor) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019
136380-Thumbnail Image.png
Description
The liquid rocket engine, more specifically, the bi-propellant liquid rocket engine, is a popular type of chemical propulsion system within the propulsion industry due to its relatively high specific impulse and high thrust levels compared to the other chemical propulsion choices. For the purposes of this thesis, a bi-propellant liquid

The liquid rocket engine, more specifically, the bi-propellant liquid rocket engine, is a popular type of chemical propulsion system within the propulsion industry due to its relatively high specific impulse and high thrust levels compared to the other chemical propulsion choices. For the purposes of this thesis, a bi-propellant liquid rocket engine system consists of a rocket engine, a set of tanks for the storage and supply of liquid propellants, and everything required in between for thrust-producing operation. Among the hardware in this "in between" necessary for a liquid rocket engine to produce thrust exists an injector, or an assembly of injector elements, whose purpose is to introduce and meter the flow of the fuel and oxidizer of the liquid rocket engine into the combustion chamber. To do this the injector or injector assembly, upon injection into the combustion chamber, must cause the two liquids to break up into small droplets, proportionally and uniformly distribute and mix the liquid into a spray pattern within the combustion chamber, and allow for engine combustion to occur as efficiently as possible. Daedalus Astronautics @ ASU, one of Arizona State University's engineering student organizations, has been working to design, construct, and successfully test a bi-propellant liquid rocket engine of its own. In doing so, Daedalus Astronautics has designed a bi-propellant liquid rocket engine injector assembly consisting of a forward bulkhead and an injector plate. The purpose of this thesis is to experimentally verify the flow of liquid through this injector assembly modeled using computational fluid dynamics methods. During the two semester time line allowed for this thesis project, a mesh was created for a single orifice geometry injector plate and combustion chamber assembly in ANSYS ICEM CFD and an experiment was designed for imaging the spray pattern from the injector plate and forward bulkhead assembly, from which several things about the injector geometry design were discovered.
ContributorsBrunacini, Lauren Elizabeth (Author) / Herrmann, Marcus (Thesis director) / Adrian, Ronald (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
153865-Thumbnail Image.png
Description
This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann,

This dissertation describes a process for interface capturing via an arbitrary-order, nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both advection and reinitialization, and executed on a refined level set grid (Herrmann, 2008) for effective use of processing power. Computation is executed in parallel utilizing both CPU and GPU architectures to make the method feasible at high order. Finally, a sparse data structure is implemented to take full advantage of parallelism on the GPU, where performance relies on well-managed memory operations.

With solution variables projected into a kth order polynomial basis, a k+1 order convergence rate is found for both advection and reinitialization tests using the method of manufactured solutions. Other standard test cases, such as Zalesak's disk and deformation of columns and spheres in periodic vortices are also performed, showing several orders of magnitude improvement over traditional WENO level set methods. These tests also show the impact of reinitialization, which often increases shape and volume errors as a result of level set scalar trapping by normal vectors calculated from the local level set field.

Accelerating advection via GPU hardware is found to provide a 30x speedup factor comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with speedup factors increasing with polynomial degree until shared memory is filled. A similar algorithm is implemented for reinitialization, which relies on heavier use of shared and global memory and as a result fills them more quickly and produces smaller speedups of 18x.
ContributorsJibben, Zechariah J (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2015
154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
ContributorsNair, Priya (Author) / Frakes, David (Thesis advisor) / Vernon, Brent (Committee member) / Chong, Brian (Committee member) / Pizziconi, Vincent (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
155305-Thumbnail Image.png
Description
The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in a 6.3 aspect-ratio cylinder at a Rayleigh number of 9.6 × 107 and Prandtl number of 6.7. Single and double point statistics are compared against experiments and several resolution criteria are examined to verify that the simulation has enough spatial and temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side walls, with rays of vorticity pointing toward the core of the cell. Two different large- scale organizations are observed and these patterns are well described spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier modes are shown to be dominant throughout the entire domain, and are found to be the primary source for radial inhomogeneity by inspection of the energy spectra. The precision with which the azimuthal Fourier modes describe these large-scale structures shows that these structures influence a large range of length scales. Conversely, the smaller scale structures are found to be more sensitive to radial position within the Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the global pattern followed by a net rotation about the central axis. The transition takes place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests a similarity in dynamic events across different aspect-ratios.
ContributorsSakievich, Philip Sakievich (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2017
151444-Thumbnail Image.png
Description
Assessments for the threats posed by volcanic eruptions rely in large part on the accurate prediction of volcanic plume motion over time. That predictive capacity is currently hindered by a limited understanding of volcanic plume dynamics. While eruption rate is considered a dominant control on volcanic plume dynamics, the effects

Assessments for the threats posed by volcanic eruptions rely in large part on the accurate prediction of volcanic plume motion over time. That predictive capacity is currently hindered by a limited understanding of volcanic plume dynamics. While eruption rate is considered a dominant control on volcanic plume dynamics, the effects of variable eruption rates on plume rise and evolution are not well understood. To address this aspect of plume dynamics, I conducted an experimental investigation wherein I quantified the relationship between laboratory jet development and highly-variable discharge rates under conditions analogous to those which may prevail in unsteady, short-lived explosive eruptions. I created turbulent jets in the laboratory by releasing pressurized water into a tank of still water. I then measured the resultant jet growth over time using simple video images and particle image velocimetry (PIV). I investigated jet behavior over a range of jet Reynolds numbers which overlaps with estimates of Reynolds numbers for short-duration volcanic plumes. By analysis of the jet boundary and velocity field evolution, I discovered a direct relationship between changes in vent conditions and jet evolution. Jet behavior evolved through a sequence of three stages - jet-like, transitional, and puff-like - that correlate with three main injection phases - acceleration, deceleration and off. While the source was off, jets were characterized by relatively constant internal velocity distributions and flow propagation followed that of a classical puff. However, while the source was on, the flow properties - both in the flows themselves and in the induced ambient flow - changed abruptly with changes at the source. On the basis of my findings for unsteady laboratory jets, I conclude that variable eruption rates with characteristic time scales close to eruption duration have first-order control over volcanic plume evolution. Prior to my study, the significance of this variation was largely uncharacterized as the volcanology community predominately uses steady eruption models for interpretation and prediction of activity. My results suggest that unsteady models are necessary to accurately interpret behavior and assess threats from unsteady, short-lived eruptions.
ContributorsChojnicki, Kirsten (Author) / Clarke, Amanda (Thesis advisor) / Williams, Stanley (Committee member) / Adrian, Ronald (Committee member) / Phillips, Jeremy (Committee member) / Fernando, Harindra (Committee member) / Arizona State University (Publisher)
Created2012
149480-Thumbnail Image.png
Description
Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective

Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective and robust because they use low Reynolds number flow to maintain fuel and oxidant separation instead of ion exchange membranes. However, membraneless fuel cells suffer from poor efficiency due to poor mass transport and Ohmic losses. Current microfluidic fuel cell designs suffer from reactant cross-diffusion and thick boundary layers at the electrode surfaces, which result in a compromise between the cell's power output and fuel utilization. This dissertation presents novel flow field architectures aimed at alleviating the mass transport limitations. The first architecture provides a reactant interface where the reactant diffusive concentration gradients are aligned with the bulk flow, mitigating reactant mixing through diffusion and thus crossover. This cell also uses porous electro-catalysts to improve electrode mass transport which results in higher extraction of reactant energy. The second architecture uses porous electrodes and an inert conductive electrolyte stream between the reactants to enhance the interfacial electrical conductivity and maintain complete reactant separation. This design is stacked hydrodynamically and electrically, analogous to membrane based systems, providing increased reactant utilization and power. These fuel cell architectures decouple the fuel cell's power output from its fuel utilization. The fuel cells are tested over a wide range of conditions including variation of the loads, reactant concentrations, background electrolytes, flow rates, and fuel cell geometries. These experiments show that increasing the fuel cell power output is accomplished by increasing reactant flow rates, electrolyte conductivity, and ionic exchange areas, and by decreasing the spacing between the electrodes. The experimental and theoretical observations presented in this dissertation will aid in the future design and commercialization of a new portable power source, which has the desired attributes of high power output per weight and volume and instant rechargeability.
ContributorsSalloum, Kamil S (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Christen, Jennifer (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2010
135488-Thumbnail Image.png
Description
This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able

This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able to capture data that shows that the flow transition from laminar to turbulent occurs at lower Reynolds numbers for a rough spherical object rather than a perfectly smooth sphere. In order to achieve this goal, both force balance testing and hot-wire testing were conducted in the Aero-lab complex in USE170. The force balance was mounted and used in the larger wind tunnel while the hot-wire probe was mounted and used in the smaller wind tunnel. Both of the wind tunnels utilized LABVIEW software in order to collect and convert the qualitative values provided by the testing probes and equipment. The two main types of testing equipment that were used in this project were the force balance and the hot-wire probe. The overall results from the experiment were inconclusive based on the limitations of both the testing probes and the testing facility itself. Overall, the experiment yielded very limited results due to these limitations.
ContributorsMilroy, Maxwell (Author) / Takahashi, Timothy (Thesis director) / Adrian, Ronald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and

Particle Image Velocimetry (PIV) has become a cornerstone of modern experimental fluid mechanics due to its unique ability to resolve the entire instantaneous two-dimensional velocity field of an experimental flow. However, this methodology has historically been omitted from undergraduate curricula due to the significant cost of research-grade PIV systems and safety considerations stemming from the high-power Nd-YAG lasers typically implemented by PIV systems. In the following undergraduate thesis, a low-cost model of a PIV system is designed to be used within the context of an undergraduate fluid mechanics lab. The proposed system consists of a Hele-Shaw water tunnel, a high-power LED lighting source, and a modern smartphone camera. Additionally, a standalone application was developed to perform the necessary image processing as well as to perform Particle Streak Velocimetry (PSV) and PIV image analysis. Ultimately, the proposed system costs $229.33 and can replicate modern PIV techniques albeit for simple flow scenarios.

ContributorsZamora, Matthew Alan (Author) / Adrian, Ronald (Thesis director) / Kim, Jeonglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05