Matching Items (14)
153042-Thumbnail Image.png
Description
The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these

The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these molecules for absorption/donor molecules in organic photovoltaics. The use of zinc phthalocyanine (ZnPc) became of particular interest, in addition to novel research being done for azaporphyrin analogs of ZnPc.

A theoretical approach is taken to research the excited states of these molecules using time-dependent density functional theory (TDDFT). Most theoretical results for the first excited state in ZnPc are in only limited agreement with experiment (errors near 0.1 eV or higher). This research investigates ZnPc and 10 additional porphyrin analogs. Excited-state properties are predicted for 8 of these molecules using ab initio computational methods and symmetry breaking for accurate time- dependent self-consistent optimization. Franck-Condon analysis is used to predict the Q-band absorption spectra for all 8 of these molecules. This is the first time that Franck-Condon analysis has been reported in absolute units for any of these molecules. The first excited-state energy for ZnPc is found to be the closest to experiment thus far using a range-separated meta-GGA hybrid functional. The theoretical results are used to find a trend in the novel design of new porphyrin analog molecules.
ContributorsTheisen, Rebekah (Author) / Adams, James B (Thesis advisor) / Li, Jian (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2014
150397-Thumbnail Image.png
Description
The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to

The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic components. In situ environmental transmission electron microscope (ETEM) is an important tool which not only allows us to perform the basic nanoscale characterization of the anode materials, but also to observe in real-time, the dynamic changes in the anode material under near-reaction conditions. The earlier part of this dissertation is focused on the synthesis and characterization of Pr- and Gd-doped cerium oxide anode materials. A novel spray drying set-up was designed and constructed for preparing nanoparticles of these mixed-oxides and nickel oxide for anode fabrication. X-ray powder diffraction was used to investigate the crystal structure and lattice parameters of the synthesized materials. Particle size distribution, morphology and chemical composition were investigated using transmission electron microscope (TEM). The nanoparticles were found to possess pit-like defects of average size 2 nm after subjecting the spray-dried material to heat treatment at 700 °C for 2 h in air. A novel electron energy-loss spectroscopy (EELS) quantification technique for determining the Pr and Gd concentrations in the mixed oxides was developed. Nano-scale compositional heterogeneity was observed in these materials. The later part of the dissertation focuses mainly on in situ investigations of the anode materials under a H2 environment in the ETEM. Nano-scale changes in the stand-alone ceramic components of the cermet anode were first investigated. Particle size and composition of the individual nanoparticles of Pr-doped ceria (PDC) were found to affect their reducibility in H2 gas. Upon reduction, amorphization of the nanoparticles was observed and was linked to the presence of pit-like defects in the spray-dried material. Investigation of metal-ceramic interactions in the Ni-loaded PDC nanoparticles indicated a localized reduction of Ce in the vicinity of the Ni/PDC interface at 420 °C. Formation of a reduction zone around the interface was attributed to H spillover which was observed directly in the ETEM. Preliminary results on the fabrication of model SOFCs and in situ behavior of Ni/Gd-doped ceria anodes have been presented.
ContributorsSharma, Vaneet (Author) / Crozier, Peter A. (Thesis advisor) / Sharma, Renu (Thesis advisor) / Adams, James B (Committee member) / Dey, Sandwip (Committee member) / Arizona State University (Publisher)
Created2011
150255-Thumbnail Image.png
Description
Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed

Thin films of ever reducing thickness are used in a plethora of applications and their performance is highly dependent on their microstructure. Computer simulations could then play a vital role in predicting the microstructure of thin films as a function of processing conditions. FACET is one such software tool designed by our research group to model polycrystalline thin film growth, including texture evolution and grain growth of polycrystalline films in 2D. Several modifications to the original FACET code were done to enhance its usability and accuracy. Simulations of sputtered silver thin films are presented here with FACET 2.0 with qualitative and semi-quantitative comparisons with previously published experimental results. Comparisons of grain size, texture and film thickness between simulations and experiments are presented which describe growth modes due to various deposition factors like flux angle and substrate temperature. These simulations provide reasonable agreement with the experimental data over a diverse range of process parameters. Preliminary experiments in depositions of Silver films are also attempted with varying substrates and thickness in order to generate complementary experimental and simulation studies of microstructure evolution. Overall, based on the comparisons, FACET provides interesting insights into thin film growth processes, and the effects of various deposition conditions on thin film structure and microstructure. Lastly, simple molecular dynamics simulations of deposition on bi-crystals are attempted for gaining insight into texture based grain competition during film growth. These simulations predict texture based grain coarsening mechanisms like twinning and grain boundary migration that have been commonly reported in FCC films.
ContributorsRairkar, Asit (Author) / Adams, James B (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2011
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were

The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were discussed in depth in this paper. Crazing only occurs in tensile stress, is initiated on the surface of the material, and only occurs in brittle polymers. Crazing also accounts for a 40-60% decrease in density, causing localized weakening of the material and a concentration in stress. This is due to a decrease in effective cross sectional area. The mechanism behind discontinuous growth bands was also discussed to be the cause of cyclic crazing. Shear banding only occurs in ductile polymers and can result in the failure of polymers via necking. Furthermore, the high fatigue resistance of silicone elastomers was discussed in this paper. This conclusion was made because of the lack of fatigue mechanisms (crazing, discontinuous growth bands, and shears banding) in the observed elastomer's microstructure after the samples had undergone fatigue tests. This was done through an analysis of room temperature vulcanized silicone adhesives, a heat-curing silicone elastomer, and a self-curing transparent silicone rubber. Fatigue of room temperature vulcanized silicon was observed, however this was reasoned to be the failure of the adhesion of the elastomer to the steel substrate instead of the microstructure itself. Additionally, the significance of fatigue in real world applications was discussed using SouthWest Airlines Flight 812 as an example.
ContributorsWong, Christopher Stanley (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135168-Thumbnail Image.png
Description
How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are

How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are quickly becoming very popular, with 232.0 million wearable devices sold in 2015. This report provides an overview of current and developing wearable devices, investigates the characteristics of the average buyer for these different types of devices. Finally, marketing strategies are suggested. This work was completed in conjunction with a capstone project with Intel, where three objectives were achieved: First, a universal strain tester that could strain samples cyclically in a manner similar to the body was designed. This equipment was especially designed to be flexible in the testing conditions it could be exposed to, so samples could be tested at elevated temperatures or even underwater. Next, dogbone shaped samples for the testing of Young’s Modulus and elongation to failure were produced, and the cut quality of laser, water-jet, and die-cutting was compared in order to select the most defect-free method for reliable testing. Polydimethylsiloxane (PDMS) is a fantastic candidate material for wearable electronics, however there is some discrepancies in the literature—such as from Eleni et. al—about the impact of ultraviolet radiation on the mechanical properties. By conducting accelerated aging tests simulating up to five years exposure to the sun, it was determined that ultraviolet-induced cross-linking of the polymer chains does occur, leading to severe embrittlement (strain to failure reduced from 3.27 to 0.06 in some cases, reduction to approximately 0.21 on average). As simulated tests of possible usage conditions required strains of at least 0.50-0.70, a variety of solutions were suggested to reduce this embrittlement. This project can lead to standardization of wearables electronics testing methods for more reliable predictions about the device behavior, whether that device is a simple pedometer or something that allows the visually impaired to “see”, such as Toyota’s Blaid.
ContributorsNiebroski, Alexander Wayne (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155237-Thumbnail Image.png
Description
Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication.

Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing.

For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.
ContributorsZhao, Zhao (Author) / Alford, Terry L. (Thesis advisor) / Anwar, Shahriar (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2017
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05