Matching Items (14)
157392-Thumbnail Image.png
Description
With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender ga

With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender gap is closing due to more advanced screening and a better understanding of how females with ASD present their symptoms. Little research has been published on the neurocognitive differences that exist between older adults with ASD compared to neurotypical (NT) counterparts, and nothing has specifically addressed older women with ASD. This study utilized neuroimaging and neuropsychological tests to examine differences between diagnosis and sex of four distinct groups: older men with ASD, older women with ASD, older NT men, and older NT women. In each group, hippocampal size (via FreeSurfer) was analyzed for differences as well as correlations with neuropsychological tests. Participants (ASD Female, n = 12; NT Female, n = 14; ASD Male, n = 30; NT Male = 22), were similar according to age, IQ, and education. The results of the study indicated that the ASD Group as a whole performed worse on executive functioning tasks (Wisconsin Card Sorting Test, Trails Making Test) and memory-related tasks (Rey Auditory Verbal Learning Test, Weschler Memory Scale: Visual Reproduction) compared to the NT Group. Interactions of sex by diagnosis approached significance only within the WCST non-perseverative errors, with the women with ASD performing worse than NT women, but no group differences between men. Effect sizes between the female groups (ASD female vs. NT female) showed more than double that of the male groups (ASD male vs. NT male) for all WCST and AVLT measures. Participants with ASD had significantly smaller right hippocampal volumes than NT participants. In addition, all older women showed larger hippocampal volumes when corrected for total intracranial volume (TIV) compared to all older men. Overall, NT Females had significant correlations across all neuropsychological tests and their hippocampal volumes whereas no other group had significant correlations. These results suggest a tighter coupling between hippocampal size and cognition in NT Females than NT Males and both sexes with ASD. This study promotes further understanding of the neuropsychological differences between older men and women, both with and without ASD. Further research is needed on a larger sample of older women with and without ASD.
ContributorsWebb, Christen Len (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2019
157084-Thumbnail Image.png
Description
Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Braden, B. Blair (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2019
134966-Thumbnail Image.png
Description
Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to

Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to study motor behavior and underlying brain integrity. Using a finger tapping task, motor performance was measured in a cross-sectional study comparing older adults with ASD and age-matched typically developing (TD) controls. We hypothesized that older adults with ASD would show poorer motor performance (slower finger tapping speed). We also hypothesized that underlying brain differences, measured using MRI, in regions associated with motor function including the primary motor cortex, basal ganglia, and cerebellum, as well as the white matter connecting tracts would exist between groups and be associated with the proposed disparity in motor performance.

Method: A finger oscillation (Finger Tapping) test was administered to both ASD (n=21) and TD (n=20) participants aged 40-70 year old participants as a test of fine motor speed. Magnetic resonance (MR) images were collected using a Philips 3 Tesla scanner. 3D T1-weighted and diffusion tensor images (DTI) were obtained to measure gray and white matter volume and white matter integrity, respectively. FreeSurfer, an automated volumetric measurement software, was used to determine group volumetric differences. Mean, radial, and axial diffusivity, fractional anisotropy, and local diffusion homogeneity were measured from DTI images using PANDA software in order to evaluate white matter integrity.

Results: All participants were right-handed and there were no significant differences in demographic variables (ASD/TD, means) including age (51.9/49.1 years), IQ (107/112) and years education (15/16). Total brain volume was not significantly different between groups. No statistically significant group differences were observed in finger tapping speed. ASD participants compared to TDs showed a trend of slower finger tapping (taps/10 seconds) speed on the dominant hand (47.00 (±11.2) vs. (50.5 (±6.6)) and nondominant hand (44.6 (±7.6) vs. (47.2 (±6.6)). However, a large degree of variability was observed in the ASD group, and the Levene’s test for homogeneity of variance approached significance (p=0.053) on the dominant, but not the nondominant, hand. No significant group differences in gray matter regional volume were found for brain regions associated with performing motor tasks. In contrast, group differences were found on several measures of white matter including the corticospinal tract, anterior internal capsule and middle cerebellar peduncle. Brain-behavior correlations showed that dominant finger tapping speed correlated with left hemisphere white matter integrity of the corticospinal tract and right hemisphere cerebellar white matter in the ASD group.

Conclusions: No significant differences were observed between groups in finger tapping speed but the high degree of variability seen in the ASD group. Differences in motor performance appear to be associated with observed brain differences, particularly in the integrity of white matter tracts contributing to motor functioning.
ContributorsDeatherage, Brandon R. (Co-author) / Braden, B. Blair (Co-author, Committee member) / Smith, Christopher J. (Co-author) / McBeath, Michael (Co-author, Thesis director) / Thompson, Aimee M. (Co-author) / Wood, Emily G. (Co-author) / McGee, Samuel C. (Co-author) / Sinha, Krishna (Co-author) / Baxter, Leslie (Co-author, Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of Information Systems (Contributor)
Created2017-05
148382-Thumbnail Image.png
Description

The aim of this study was to explore cross-sectional and longitudinal aging differences in immediate and delayed visual and verbal memory abilities in individuals with Autism Spectrum Disorder (ASD) compared with neurotypicals (NTs). We measured hippocampal size, fornix fractional anisotropy (FA), and hippocampal and fornix freewater to understand how aging

The aim of this study was to explore cross-sectional and longitudinal aging differences in immediate and delayed visual and verbal memory abilities in individuals with Autism Spectrum Disorder (ASD) compared with neurotypicals (NTs). We measured hippocampal size, fornix fractional anisotropy (FA), and hippocampal and fornix freewater to understand how aging impacts memory structures. Longitudinal findings highlight vulnerabilities in immediate verbal memory and hippocampal volume, while cross-sectional findings indicate fornix freewater may increase at a faster rate in adults with ASD. Future research will examine cognitive and structural sex differences and will study how cognitive measures correlate with structural measures.

ContributorsSullivan, Georgia Rose (Author) / Braden, B. Blair (Thesis director) / Ofori, Edward (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
128593-Thumbnail Image.png
Description

In women, high levels of natural progesterone have been associated with detrimental cognitive effects via the “maternal amnesia” phenomenon as well as in controlled experiments. In aged ovariectomized (Ovx) rats, progesterone has been shown to impair cognition and impact the GABAergic system in cognitive brain regions. Here, we tested whether

In women, high levels of natural progesterone have been associated with detrimental cognitive effects via the “maternal amnesia” phenomenon as well as in controlled experiments. In aged ovariectomized (Ovx) rats, progesterone has been shown to impair cognition and impact the GABAergic system in cognitive brain regions. Here, we tested whether the GABAergic system is a mechanism of progesterone’s detrimental cognitive effects in the Ovx rat by attempting to reverse progesterone-induced impairments via concomitant treatment with the GABAA antagonist, bicuculline. Thirteen month old rats received Ovx plus daily vehicle, progesterone, bicuculline, or progesterone+bicuculline injections beginning 2 weeks prior to testing. The water radial-arm maze was used to evaluate spatial working and reference memory. During learning, rats administered progesterone made more working memory errors than those administered vehicle, and this impairment was reversed by the addition of bicuculline. The progesterone impairment was transient and all animals performed similarly by the end of regular testing. On the last day of testing, a 6 hour delay was administered to evaluate memory retention. Progesterone-treated rats were the only group to increase working memory errors with the delay relative to baseline performance; again, the addition of bicuculline prevented the progesterone-induced impairment. The vehicle, bicuculline, and progesterone+bicuculline groups were not impaired by the delay. The current rodent findings corroborate prior research reporting progesterone-induced detriments on cognition in women and in the aging Ovx rat. Moreover, the data suggest that the progesterone-induced cognitive impairment is, in part, related to the GABAergic system. Given that progesterone is included in numerous clinically-prescribed hormone therapies and contraceptives (e.g., micronized), and as synthetic analogs, further research is warranted to better understand the parameters and mechanism(s) of progesterone-induced cognitive impairments.

ContributorsBraden, B. Blair (Author) / Kingston, Melissa (Author) / Koenig, Elizabeth (Author) / Lavery, Courtney (Author) / Tsang, Candy (Author) / Bimonte-Nelson, Heather (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-14
128548-Thumbnail Image.png
Description

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity.

ContributorsDi Martino, Adriana (Author) / O'Connor, David (Author) / Chen, Bosi (Author) / Alaerts, Kaat (Author) / Anderson, Jeffrey S. (Author) / Assaf, Michal (Author) / Balsters, Joshua H. (Author) / Baxter, Leslie (Author) / Beggiato, Anita (Author) / Bernaerts, Sylvie (Author) / Blanken, Laura M. E. (Author) / Bookheimer, Susan Y. (Author) / Braden, B. Blair (Author) / Byrge, Lisa (Author) / Castellanos, F. Xavier (Author) / Dapretto, Mirella (Author) / Delorme, Richard (Author) / Fair, Damien A. (Author) / Fishman, Inna (Author) / Fitzgerald, Jacqueline (Author) / Gallagher, Louise (Author) / Keehn, R. Joanne Jao (Author) / Kennedy, Daniel P. (Author) / Lainhart, Janet E. (Author) / Luna, Beatriz (Author) / Mostofsky, Stewart H. (Author) / Muller, Ralph-Axel (Author) / Nebel, Mary Beth (Author) / Nigg, Joel T. (Author) / O'Hearn, Kirsten (Author) / Solomon, Marjorie (Author) / Toro, Roberto (Author) / Vaidya, Chandan J. (Author) / Wenderoth, Nicole (Author) / White, Tonya (Author) / Craddock, R. Cameron (Author) / Lord, Catherine (Author) / Leventhal, Bennett (Author) / Milham, Michael P. (Author) / College of Health Solutions (Contributor)
Created2017-03-14
141500-Thumbnail Image.png
Description

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller's classic description of a processing-inclusive human working memory capacity of 7 ± 2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

ContributorsMennenga, Sarah (Author) / Baxter, Leslie C. (Author) / Grunfeld, Itamar (Author) / Brewer, Gene (Author) / Aiken, Leona (Author) / Engler-Chiurazzi, Elizabeth (Author) / Camp, Bryan (Author) / Acosta, Jazmin (Author) / Braden, B. Blair (Author) / Schaefer, Keley (Author) / Gerson, Julia (Author) / Lavery, Courtney (Author) / Tsang, Candy (Author) / Hewitt, Lauren (Author) / Kingston, Melissa L. (Author) / Koebele, Stephanie (Author) / Patten, Kristopher (Author) / Ball, B. Hunter (Author) / McBeath, Michael (Author) / Bimonte-Nelson, Heather (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-09
171370-Thumbnail Image.png
Description
Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and

Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and has been shown to improve mental health in autistic adults. However, the underlying therapeutic neural mechanisms and whether behavioral and brain changes are mindfulness-specific have yet to be elucidated. In this randomized clinical trial, I utilized functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to characterize fMRI functional activity (Study 1) and connectivity (Study 2) and EEG neurophysiological (Study 3) changes between MBSR and a social support/relaxation education (SE) active control group. Study 1 revealed an MBSR-specific increase in the midcingulate cortex fMRI blood oxygen level dependent signal which was associated with reduced depression. Study 2 identified nonspecific intervention improvements in depression, anxiety, and autistic, and MBSR-specific improvements in the mindfulness trait ‘nonjudgment toward experience’ and in the executive functioning domain of working memory. MBSR-specific decreases in insula-thalamus and frontal pole-posterior cingulate functional connectivity was associated with improvements in anxiety, mindfulness traits, and working memory abilities. Both MBSR and SE groups showed decreased amygdala-sensorimotor and frontal pole-insula connectivity which correlated with reduced depression. Study 3 consisted of an EEG spectral power analysis at high-frequency brainwaves associated with default mode network (DMN) activity. Results showed MBSR-specific and nonspecific decreases in beta- and gamma-band power, with effects being generally more robust in the MBSR group; additionally, MBSR-specific decreases in posterior gamma correlated with anxiolytic effects. Collectively, these studies suggest: 1) social support is sufficient for improvements in depression, anxiety, and autistic traits; 2) MBSR provides additional benefits related to mindfulness traits and working memory; and 3) distinct and shared neural mechanisms of mindfulness training in adults with ASD, implicating the salience and default mode networks and high-frequency neurophysiology. Findings bear relevance to the development of personalized medicine approaches for psychiatric co-morbidity in ASD, provide putative targets for neurostimulation research, and warrant replication and extension using advanced multimodal imaging approaches.
ContributorsPagni, Broc (Author) / Braden, B. Blair (Thesis advisor) / Newbern, Jason (Thesis advisor) / Davis, Mary (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
171839-Thumbnail Image.png
Description
Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic

Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic risk. Beyond etiology, sex-related biology has also been implicated in lifespan risk for health and psychiatric conditions that show common co-morbidity in autism. Thus, understanding how sex-related biology impacts autism etiology and progression has important implications for prognosis and treatment. Neuroimaging offers a powerful tool for in-vivo characterization of brain-based sex differences in autism, especially given emerging efforts to develop large, well-characterized longitudinal samples. To date, however, neuroimaging studies have shown mixed and inconsistent findings, which remain challenging to integrate in the broader literature context. In a recent systematic review of neuroimaging studies of typical sex differences, few to no replicable effects were found beyond brain size, suggesting the brain is not “sexually dimorphic.” Instead, it is argued that the brain is a “mosaic” of features from various sources, including masculine and feminine biological processes as well as individual genetics and environment. Thus, designing neuroimaging studies that are sensitive to brain-based sex differences in autism likely requires careful study design and analytical method selection. Through a series of studies, the overarching dissertation aim was to identify optimal methods for characterizing neuroimaging-based sex differences in autism and to test these methods in preliminary samples. Study 1 comprised a systematic review of studies examining neuroimaging-based sex differences in autism with the aim of identifying optimal study designs, neuroimaging modalities, and analytical methods. Study 2 focused on examining the sensitivity of a connectome-wide approach to identify functional connectivity hubs underlying sex-biased behavior associated with autism (e.g., camouflaging). Study 3 used a connectome-wide functional connectivity approach to characterize sex differences in longitudinal changes associated with autistic traits vs. categorical diagnosis. These studies suggest that optimizing study design and methods improves identification of biologically plausible and clinically meaningful brain sex differences in autism. The relevance of findings to etiology and prognosis are discussed.
ContributorsWalsh, Melissa (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2022
171624-Thumbnail Image.png
Description
Behavior challenges impact children and educational professionals on a daily basis; however, it is difficult for educators to obtain high quality training in behavior management. The purpose of this study was to compare cognitive apprenticeship and group work, two teaching methods, to determine which provides better knowledge and implementation outcomes

Behavior challenges impact children and educational professionals on a daily basis; however, it is difficult for educators to obtain high quality training in behavior management. The purpose of this study was to compare cognitive apprenticeship and group work, two teaching methods, to determine which provides better knowledge and implementation outcomes for educators taking a course on behavior analysis. Seventeen educational professionals currently working with students who display challenging behavior were randomly assigned to the cognitive apprenticeship or group work conditions. The difference between the conditions is the introduction of a coach in the cognitive apprenticeship condition. The coach guides learners through the process of understanding and using behavior analysis throughout the course by providing feedback, scaffolding, and encouraging reflection and exploration. Participants completed pre-, post-, and post-posttests that measured their knowledge of behavior analysis and how well they implemented the skills taught in the course. Additionally, they completed weekly quizzes and reported how often they used the skills in real-life situations. Overall group differences across time points for knowledge and implementation scores were analyzed using a repeated measures analysis of variance (ANOVA). There were significant differences across time for both scores but not condition or time by condition. A covariance pattern model was used to determine if self-efficacy, self-confidence, previous behavior knowledge, or overall quiz performance predicted the variance in knowledge and implementation scores on the pre-, post-, and post-posttests across conditions. Time was the only significant predictor of knowledge scores, while time, condition and self-efficacy significantly predicted the variance in implementation scores. Additionally, one-way ANOVAs were used to find condition-based differences in quiz scores and practical skill use, neither of which were significant. Finally, a linear regression was used to determine if on quiz performance predicts the use of skills in real-world settings, which it did not. The courses impact on learning, skill use, and student behavior as well as future applications are discussed.
ContributorsSacchetta, Melissa (Author) / Gray, Shelley (Thesis advisor) / Braden, B. Blair (Committee member) / McNeish, Daniel (Committee member) / Zuiker, Steve (Committee member) / Arizona State University (Publisher)
Created2022