Matching Items (1)
153050-Thumbnail Image.png
Description
Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as

Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas.

The gain and loss factor of conical horns are revisited in this dissertation based on

spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to determine whether they were derived based on spherical or quadratic aperture phase distributions. In this work, it is demonstrated that the gain of a conical horn antenna obtained by using a spherical phase distribution is in close agreement with published classical data. Moreover, more accurate expressions for the loss factor, to account for amplitude and phase tapers over the horn aperture, are derived. New formulas for the design of optimum gain conical horns, based on the more accurate spherical aperture phase distribution, are derived.

To better understand the impact of edge diffractions on aperture antenna performance, an extensive investigation of the edge diffractions impact is undertaken in this dissertation for commercial aperture antennas. The impact of finite uncoated and coated PEC ground plane edge diffractions on the amplitude patterns in the principal planes of circular apertures is intensively examined. Similarly, aperture edge diffractions of aperture antennas without ground planes are examined. Computational results obtained by the analytical model are compared with experimental and HFSS-simulated results for all cases studied. In addition, the impact of the ground plane size, coating thickness, and relative permittivity of the dielectric layer on the radiation amplitude in the back region has been examined.

This investigation indicates that the edge diffractions do impact the main forward lobe pattern, especially in the E plane. Their most significant contribution appears in far side and back lobes. This work demonstrates that the finite edge contributors must be considered to obtain more accurate amplitude patterns of aperture antennas.
ContributorsAboserwal, Nafati Abdasallam (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Pan, George (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014