Matching Items (50)
149385-Thumbnail Image.png
Description
Magnetic resonance (MR) imaging with data acquisition on a non-rectangular grid permits a variety of approaches to cover k-space. This flexibility can be exploited to achieve clinically relevant characteristics -- fast yet full coverage for short scan times, center out schemes for short Te, over-sampled k-space for robustness to motion,

Magnetic resonance (MR) imaging with data acquisition on a non-rectangular grid permits a variety of approaches to cover k-space. This flexibility can be exploited to achieve clinically relevant characteristics -- fast yet full coverage for short scan times, center out schemes for short Te, over-sampled k-space for robustness to motion, long acquisition time for improved signal-to-noise (SNR) performance and benign under-sampling (aliasing) artifact. This dissertation presents advances in Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) trajectory design and improved reconstruction for spiral imaging. Scan time in PROPELLER imaging can be reduced by tailoring the trajectory to the required Field-Of-View (FOV). A technique to design the PROPELLER trajectory for an elliptical FOV is described. The proposed solution is a set of empirically derived closed form equations that preserve the standard PROPELLER geometry and specify the minimum number of blades necessary. Reconstructing spiral scans requires accurate trajectory information. A simple method to measure the deviation from the designed trajectory due to gradient coupling is presented. A line phantom is used to force a uniform structure in a predetermined orientation in k-space. This uniformity permits measurements of zeroth order trajectory deviations due to gradient coupling. Spiral reconstruction is also sensitive to B0 inhomogeneities (variations in the external magnetic field). This sensitivity manifests itself as a spatially varying blur. An algorithm to correct for concomitant field and first order B0 inhomogeneity effects is developed based on de-blurring via convolution by separable kernels. To reduce computation time, an empirical equation for sufficient kernel length is derived. It is also necessary to know the noise characteristics of the proposed algorithm; this is investigated via Monte-Carlo simulations. The algorithm is further extended to correct for concomitant field artifacts by modeling these artifacts as blurring due to a temporally static field map. This approach has the potential for further reduction in computational cost by combining the B0 map with the concomitant field map to simultaneously correct for artifacts resulting from both field inhomogeneities and concomitant field map.
ContributorsDevaraj, Ajit (Author) / Pipe, James G (Thesis advisor) / Karam, Lina J (Thesis advisor) / Frakes, David H (Committee member) / Aberle, James T (Committee member) / Arizona State University (Publisher)
Created2010
149395-Thumbnail Image.png
Description
The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate

The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate the radiation dose level using RADFET, a wired readout circuit is necessary. Using the same principle of oxide-trapped charge build-up, but by monitoring the change in capacitance instead of threshold voltage, a wireless dose sensor can be developed. This RADiation sensitive CAPacitor (RADCAP) mounted on a resonant patch antenna can then become a wireless dose sensor. From the resonant frequency, the capacitance can be extracted which can be mapped back to estimate the radiation dose level. The capacitor acts as both radiation dose sensor and resonator element in the passive antenna loop. Since the MOS capacitor is used in passive state, characterizing various parameters that affect the radiation sensitivity is essential. Oxide processing technique, choice of insulator material, and thickness of the insulator, critically affect the dose response of the sensor. A thicker oxide improves the radiation sensitivity but reduces the dynamic range of dose levels for which the sensor can be used. The oxide processing scheme primarily determines the interface trap charge and oxide-trapped charge development; controlling this parameter is critical to building a better dose sensor.
ContributorsSrinivasan Gopalan, Madusudanan (Author) / Barnaby, Hugh (Thesis advisor) / Holbert, Keith E. (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2010
172015-Thumbnail Image.png
Description
The reconfigurable intelligent surface (RIS) shown in this work is a programmable metasurface integrated with a dedicated microcontroller that redirects an impinging signal to the desired direction. Its characteristic allows the RIS to act as a mirror for microwave signals. Unlike a perfect electric conductor (PEC), the RIS has much

The reconfigurable intelligent surface (RIS) shown in this work is a programmable metasurface integrated with a dedicated microcontroller that redirects an impinging signal to the desired direction. Its characteristic allows the RIS to act as a mirror for microwave signals. Unlike a perfect electric conductor (PEC), the RIS has much more flexibility in redirecting signals. This work involves the measurement of a passive, fixed beam, 25x32 element mmWave RIS that operates at 28.5 GHz. Bistatic and monostatic measurement setups are both used to find the radar cross section (RCS) of the RIS. The process of creating the measurement setups and the final measurement results is discussed. The measurement setup is further characterized using the High-Frequency Structure Simulator (HFSS) software and the final measurement results are compared to analytical solutions computed using MATLAB. The first prototype of the RIS has a loss of 8.4 dB when compared to a PEC and is physically curved. There is also a side lobe at the boresight of the RIS board that is only 8 dB less than the main beam in best-case scenario. This curvature causes issues with the monostatic measurement because it changes the phase that arrives at the RIS. The second prototype of the RIS has only 5.84 dB of loss compared to PEC. This measurement setup behaves mostly as expected when comparing the measurement results to the analytical solutions and given the limitations of the setup. A collimating lens was used as a part of the setup which reflects part of the incoming signal. The edge of the lens also causes diffraction. These factors contribute to multipath interference arriving at the receive antenna and increases measurement error. The lens also creates unequal amplitude illumination across the surface of the RIS which changes the RCS pattern. Using the lens allows a more space-efficient setup while still obtaining relatively constant phase illuminating across the RIS board.
ContributorsTjahjadi, Brian (Author) / Trichopoulos, Georgios C (Thesis advisor) / Aberle, James T (Committee member) / Imani, Seyedmohammadreza F (Committee member) / Arizona State University (Publisher)
Created2022
187543-Thumbnail Image.png
Description
The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a

The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a crucial role in technology enabling. However, validation of interconnect performance becomes increasingly challenging at these higher speeds. High-speed interconnect behavior can be reliably predicted if interconnect models are successfully validated against measurements. In industry, it is still not common practice to perform validation at actual use conditions. Therefore, there is an urge for a restructured design methodology and metrology based on temperature and humidity, to set realistic specs for high speed interconnects and reduce probability of failure under variations. Uncertainty quantification and propagation for interconnect validation is critical to assess the correlation quality more objectively, as well as to determine the bottleneck to improve the accuracy, repeatability and reproducibility of all the measurements involved in validation. The purpose of this work is to create a methodology that is both academically rigorous and has a significant impact on industry. This methodology provides an accurate characterization of the electrical performance of interconnects under realistic use-conditions, accompanied by an uncertainty analysis to improve the assessment of correlation quality. Part of this work contributed to the Packaging Benchmark Suite developed by IEEE EPS technical committee on electrical design, modeling, and simulation.
ContributorsGeyik, Cemil S (Author) / Aberle, James T (Thesis advisor) / Zhang, Zhichao (Committee member) / Polka, Lesley A (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2023
158576-Thumbnail Image.png
Description
Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a

Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a ground plane, have attained a maximum directivity of 8 dBi. While HISs are more attractive ground planes for low profile antennas, these HISs result in a low directivity as compared to PEC ground planes. Various studies have shown that Perfect Electric Conductor (PEC) ground planes are capable of achieving higher directivity, at the expense of matching efficiency, when the spacing

between the radiating element and the PEC ground plane is less than 0.25 lambda. To establish an efficient ground plane for low profile applications, PEC (Perfect Electric Conductor) and PMC (Perfect Magnetic Conductor) ground planes are examined in the vicinity of electric and magnetic radiating elements. The limitation of the two ground planes, in terms of radiation efficiency and the impedance matching, are discussed. Far-field analytical formulations are derived and the results are compared with full-wave EM simulations performed using the High-Frequency Structure Simulator (HFSS). Based on PEC and PMC designs, two engineered ground planes are proposed.

The designed ground planes depend on two metasurface properties; namely in-phase reflection and excitation of surface waves. Two ground plane geometries are considered. The first one is designed for a circular loop radiating element, which utilizes a

circular HIS ring deployed on a circular ground plane. The integration of the loop element with the circular HIS ground plane enhances the maximum directivity up to 10.5 dB with a 13% fractional bandwidth. The second ground plane is designed for a square loop radiating element. Unlike the first design, rectangular HIS patches are utilized to control the excitation of surface waves in the principal planes. The final design operates from 3.8 to 5 GHz (27% fractional bandwidth) with a stable broadside maximum realized gain up to 11.9 dBi. To verify the proposed designs, a prototype was fabricated and measurements were conducted. A good agreement between simulations and measurements was observed. Furthermore, multiple square ring elements are embedded within the periodic patches to form a surface wave planar antenna array. Linear and circular polarizations are proposed and compared to a conventional square ring array. The implementation of periodic patches results in a better matching bandwidth and higher broadside gain compared to a conventional array.
ContributorsAlharbi, Mohammed (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Palais, Joseph (Committee member) / Trichopoulos, Georgios C (Committee member) / Arizona State University (Publisher)
Created2020
Description

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

ContributorsSong, Zeming (Author) / Wang, Xu (Author) / Lv, Cheng (Author) / An, Yonghao (Author) / Liang, Mengbing (Author) / Ma, Teng (Author) / He, David (Author) / Zheng, Ying-Jie (Author) / Huang, Shi-Qing (Author) / Yu, Hongyu (Author) / Jiang, Hanqing (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-11
151228-Thumbnail Image.png
Description
Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer

Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer level measurements is included in the thesis. Moreover, a statistical technique is introduced that can reduce the number of wafer level measurements, meanwhile obtaining an accurate estimate of unmeasured parameters. To improve estimation accuracy, outlier analysis is the effective technique and merged in the test flow. Besides, an algorithm for optimizing test set is included, also providing numerical estimated prediction error.
ContributorsDeng, Lingfei (Author) / Ozev, Sule (Thesis advisor) / Yu, Hongyu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
190918-Thumbnail Image.png
Description
Reconfigurable metasurfaces (RMSs) are promising solutions for beamforming and sensing applications including 5G and beyond wireless communications, satellite and radar systems, and biomarker sensing. In this work, three distinct RMS architectures – reconfigurable intelligent surfaces (RISs), meta-transmission lines (meta-TLs), and substrate integrated waveguide leaky-wave antennas (SIW-LWAs) are developed and characterized.

Reconfigurable metasurfaces (RMSs) are promising solutions for beamforming and sensing applications including 5G and beyond wireless communications, satellite and radar systems, and biomarker sensing. In this work, three distinct RMS architectures – reconfigurable intelligent surfaces (RISs), meta-transmission lines (meta-TLs), and substrate integrated waveguide leaky-wave antennas (SIW-LWAs) are developed and characterized. The ever-increasing demand for higher data rates and lower latencies has propelled the telecommunications industry to adopt higher frequencies for 5G and beyond wireless communications. However, this transition to higher frequencies introduces challenges in terms of signal coverage and path loss. Many base stations would be necessary to ensure signal fidelity in such a setting, making bulky phased array-based solutions impractical. Consequently, to meet the unique needs of 5G and beyond wireless communication networks, this work proposes the use of RISs characterized by low-profile, low-RF losses, low-power consumption, and high-gain capabilities, making them excellent candidates for future wireless communication applications. Specifically, RISs at sub-6GHz, mmWave and sub-THz frequencies are analyzed to demonstrate their ability to improve signal strength and coverage. Further, a linear meta-TL wave space is designed to achieve miniaturization of true-time delay beamforming structures such as Rotman lenses which are traditionally bulky. To address this challenge, a modified lumped element TL model is proposed. A meta-TL is created by including the mutual coupling effects and can be used to slow down the electromagnetic signal and realize miniaturized lenses. A proof-of-concept 1D meta-TL is developed to demonstrate about 90% size reduction and 40% bandwidth improvement. Furthermore, a conformable antenna design for radio frequency-based tracking of hand gestures is also detailed. SIW-LWA is employed as the radiating element to couple RF signals into the human hand. The antenna is envisaged to be integrated in a wristband topology and capture the changes in the electric field caused by various movements of the hand. The scattering parameters are used to track the changes in the wrist anatomy. Sensor characterization showed significant sensitivity suppression due to lossy multi-dielectric nature tissues in the wrist. However, the sensor demonstrates good coupling of electromagnetic energy making it suitable for on-body wireless communications and magnetic resonance imaging applications.
ContributorsKashyap, Bharath Gundappa (Author) / Trichopoulos, Georgios C (Thesis advisor) / Balanis, Constantine A (Committee member) / Aberle, James T (Committee member) / Alkhateeb, Ahmed (Committee member) / Imani, Seyedmohammedreza F (Committee member) / Arizona State University (Publisher)
Created2023
129554-Thumbnail Image.png
Description

We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional

We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials.

ContributorsLv, Cheng (Author) / Krishnaraju, Deepak Shyam (Author) / Konjevod, Goran (Author) / Yu, Hongyu (Author) / Jiang, Hanqing (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-07
128181-Thumbnail Image.png
Description

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

ContributorsYu, Shimeng (Author) / Gao, Bin (Author) / Fang, Zheng (Author) / Yu, Hongyu (Author) / Kang, Jinfeng (Author) / Wong, H.-S. Philip (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-31