Matching Items (37)
156986-Thumbnail Image.png
Description
Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their use to single-channel recording from anesthetized animals. Further, intracellular recordings

Intracellular voltage recordings from single neurons in vitro and in vivo have been fundamental to our understanding of neuronal function. Conventional electrodes and associated positioning systems for intracellular recording in vivo are large and bulky, which has largely restricted their use to single-channel recording from anesthetized animals. Further, intracellular recordings are very cumbersome, requiring a high degree of skill not readily achieved in a typical laboratory. This dissertation presents a robotic, head-mountable, MEMS (Micro-Electro-Mechanical Systems) based intracellular recording system to overcome the above limitations associated with form-factor, scalability and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: 1) novel microscale, polycrystalline silicon-based electrode for intracellular recording, 2) electrothermal microactuators for precise microscale navigation of the electrode and 3) closed-loop control algorithm for autonomous movement and positioning of electrode inside single neurons. First, two distinct designs of polysilicon-based microscale electrodes were fabricated and tested for intracellular recordings. In the first approach, tips of polysilicon microelectrodes were milled to nanoscale dimensions (<300 nm) using focused ion beam (FIB) to develop polysilicon nanoelectrodes. Polysilicon nanoelectrodes recorded >1.5 mV amplitude, positive-going action potentials and synaptic potentials from neurons in the abdominal ganglion of Aplysia Californica. In the second approach, polysilicon microelectrodes were integrated with miniaturized glass micropipettes filled with electrolyte to fabricate glass-polysilicon microelectrodes. These electrodes consistently recorded high fidelity intracellular potentials from neurons in the abdominal ganglion of Aplysia Californica (Resting Potentials < -35 mV, Action Potentials > 60 mV) as well as the rat motor cortex (Resting Potentials < -50 mV). Next, glass-polysilicon microelectrodes were coupled with microscale electrothermal actuators and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion. Consistent resting potentials (< -35 mV) and action potentials (> 60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass-polysilicon microelectrodes. The success rate of penetration and quality of recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Finally, the feasibility of this miniaturized system to obtain intracellular recordings from single neurons in the motor cortex of rats in vivo is also demonstrated. The MEMS-based system offers significant advantages: 1) reduction in overall size for potential use in behaving animals, 2) scalable approach to potentially realize multi-channel recordings and 3) a viable method to fully automate measurement of intracellular recordings.
ContributorsSampath Kumar, Swathy (Author) / Muthuswamy, Jit (Thesis advisor) / Abbas, James (Committee member) / Hamm, Thomas (Committee member) / Christen, Jennifer Blain (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
133348-Thumbnail Image.png
Description
The inception of the human-powered water pump began during my trip to Maasailand in Kenya over the Summer of 2017. Being one of the few Broadening the Reach of Engineering through Community Engagement (BRECE) Scholars at Arizona State University, I was given the opportunity to join Prescott College (PC) on

The inception of the human-powered water pump began during my trip to Maasailand in Kenya over the Summer of 2017. Being one of the few Broadening the Reach of Engineering through Community Engagement (BRECE) Scholars at Arizona State University, I was given the opportunity to join Prescott College (PC) on their annual trip to the Maasai Education, Research, and Conservation (MERC) Institute in rural Kenya. The ASU BRECE scholars that choose to travel were asked to collaborate with the local Maasai community to help develop functional and sustainable engineering solutions to problems identified alongside community members using rudimentary technology and tools that were available in this resource-constrained setting. This initiative evolved into multiple projects from the installation of GravityLights (a local invention that powers LEDs with falling sandbags), the construction/installation of smokeless stoves, and development of a much-needed solution to move water from the rainwater collection tanks around camp to other locations. This last project listed was prototyped once in camp, and this report details subsequent iterations of this human-powered pump.
ContributorsMiller, Miles Edward (Author) / Henderson, Mark (Thesis director) / Abbas, James (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133398-Thumbnail Image.png
Description
Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic

Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic feedback from the stump-socket interface. Unfortunately, this is not an adequate substitute. Areas of the stump that directly interface with the socket are also prone to painful irritation, which further degrades haptic feedback. The lack of somatosensory feedback from prosthetic legs causes several problems for lower-limb amputees. Previous studies have established that the lack of adequate sensory feedback from prosthetic limbs contributes to poor balance and abnormal gait kinematics. These improper gait kinematics can, in turn, lead to the development of musculoskeletal diseases. Finally, the absence of sensory information has been shown to lead to steeper learning curves and increased rehabilitation times, which hampers amputees from recovering from the trauma. In this study, a novel haptic feedback system for lower-limb amputees was develped, and studies were performed to verify that information presented was sufficiently accurate and precise in comparison to a Bertec 4060-NC force plate. The prototype device consisted of a sensorized insole, a belt-mounted microcontroller, and a linear array of four vibrotactile motors worn on the thigh. The prototype worked by calculating the center of pressure in the anteroposterior plane, and applying a time-discrete vibrotactile stimulus based on the location of the center of pressure.
ContributorsKaplan, Gabriel Benjamin (Author) / Abbas, James (Thesis director) / McDaniel, Troy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133785-Thumbnail Image.png
Description
This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of

This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of the three in each group received a dorsal, partial spinal cord injury. Locomotion was then analyzed every week, over 8-10 weeks. One of the two injured animals was given open access to a wheel after 2 weeks for voluntary exercise training. The results of this study suggested that injured animals displayed more irregular stepping patterns, larger hindlimb bases of support, greater and more variable interpaw distances, slower hindlimb speed, and increased dependency of swing-phase duty cycle on hindlimb speed. Trained animals displayed quicker recovery of stepping patterns, stepping of the hindpaw in relation to the preceding ipsilateral forepaw, and higher swing-duty cycle dependency on hindlimb speed in comparison to injured animals that did not receive exercise training. Due to a small sample size, there was a large amount of variation between individual animals in most parameters. These results are considered to be potential effects that may be seen in further study with a larger sample size. The research team will continue the research project to examine changes in neural pathways in the spinal cord and the effects of exercise on recovery after injury.
ContributorsSleem, Tamara Hatem (Author) / Abbas, James (Thesis director) / Hamm, Thomas (Committee member) / School of Human Evolution and Social Change (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154664-Thumbnail Image.png
Description
Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
ContributorsPalaniswamy, Sivakumar (Author) / Muthuswamy, Jitendran (Thesis advisor) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2016
155887-Thumbnail Image.png
Description
Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The

Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthetic designed has: a one-step surgical process, large cavities for bone tissue ingrowth, uses a material that has an elastic modulus less than skeletal bone, and can be fabricated on one system.

FFF osseointegration screw is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. The current prosthetic design requires two invasive surgeries for implantation and are made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and overtime can cause loosening of the prosthetic.

The tactile sensor is a thermoplastic piezo-resistive sensor for daily activities for a prosthetic’s feedback system. The tactile sensor is manufactured from a low elastic modulus composite comprising of a compressible thermoplastic elastomer and conductive carbon. Carbon is in graphite form and added in high filler ratios. The printed sensors were compared to sensors that were fabricated in a gravity mold to highlight the difference in FFF sensors to molded sensors. The 3D printed tactile sensor has a thickness and feel similar to human skin, has a simple fabrication technique, can detect forces needed for daily activities, and can be manufactured in to user specific geometries.

Lastly, a biomimicking skeletal muscle actuator for prosthetics was developed. The actuator developed is manufactured with Fuse Filament Fabrication using a shape memory polymer composite that has non-linear contractile and passive forces, contractile forces and strains comparable to mammalian skeletal muscle, reaction time under one second, low operating temperature, and has a low mass, volume, and material costs. The actuator improves upon current prosthetic actuators that provide rigid, linear force with high weight, cost, and noise.
ContributorsLathers, Steven (Author) / La Belle, Jeffrey (Thesis advisor) / Vowels, David (Committee member) / Lockhart, Thurmon (Committee member) / Abbas, James (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2017
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017
155565-Thumbnail Image.png
Description
The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed

The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed self-monitoring blood glucose (SMBG) strips. Additive manufacturing, specifically 3D printing, is a developing field that is growing in popularity and functionality. 3D printers are now being used in a variety of applications from consumer goods to medical devices. Healthcare delivery will change as the availability of 3D printers expands into patient homes, which will create alternative and more cost-effective methods of monitoring and managing diseases, such as diabetes. 3D printing technology could transform this expensive industry. A 3D printed sensor was designed to have similar dimensions and features to the SMBG strips to comply with current manufacturing standards. To make the sensor electrically active, various conductive filaments were tested and the conductive graphene filament was determined to be the best material for the sensor. Experiments were conducted to determine the optimal print settings for printing this filament onto a mylar substrate, the industry standard. The reagents used include a mixture of a ferricyanide redox mediator and flavin adenine dinucleotide dependent glucose dehydrogenase. With these materials, each sensor only costs $0.40 to print and use. Before testing the 3D printed sensor, a suitable design, voltage range, and redox probe concentration were determined. Experiments demonstrated that this novel 3D printed sensor can accurately correlate current output to glucose concentration. It was verified that the sensor can accurately detect glucose levels from 25 mg/dL to 400 mg/dL, with an R2 correlation value as high as 0.97, which was critical as it covered hypoglycemic to hyperglycemic levels. This demonstrated that a 3D-printed sensor was created that had characteristics that are suitable for clinical use. This will allow diabetics to print their own test strips at home at a much lower cost compared to SMBG strips, which will reduce noncompliance due to the high cost of testing. In the future, this technology could be applied to additional biomarkers to measure and monitor other diseases.
ContributorsAdams, Anngela (Author) / LaBelle, Jeffrey (Thesis advisor) / Pizziconi, Vincent (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2017
155188-Thumbnail Image.png
Description
The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer

The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer is used for the study with the pulse characteristics of 57msec long train burst and duty cycle of 8% followed by an interrogative electrical stimulus varying from 30μsecs to 2msecs in pulse duration. The nerve excitability is determined by the compound action potential (CAP) amplitude evoked by a constant electrical stimulus. We observe that ultrasound's immediate effect on axons is to reduce the electrically evoked CAP amplitude and thereby suppressive in effect. However, a subsequent time delayed increased excitability was observed as reflected in the CAP amplitude of the nerve several tens of milliseconds later. This subsequent change from ultrasound induced nerve inhibition to increased excitability as a function of delay from ultrasound pulse application is unexpected and not predicted by typical nerve ion channel kinetic models. The recruitment curve of the sciatic nerve modified by ultrasound suggests the possibility of a fiber specific response where the ultrasound inhibits the faster fibers more than the slower ones. Also, changes in the shape of the CAP waveform when the nerve is under the inhibitive effect of ultrasound was observed. It is postulated that these effects can be a result of activation of stretch activation channels, mechanical sensitivity of the nerve to acoustic radiation pressure and modulation of ion channels by ultrasound.

The neuromodulatory capabilities of ultrasound in tandem with electrical stimulation has a significant potential for development of neural interfaces to peripheral nerve.
ContributorsChirania, Sanchit (Author) / Towe, Bruce (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
148082-Thumbnail Image.png
Description

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle

There are many challenges in designing neuroprostheses and one of them is to maintain proper axon selectivity in all situations. This project is based on an electrode that is implanted into a fascicle in a peripheral nerve and used to provide tactile sensory feedback of a prosthetic arm. This fascicle can undergo mechanical deformation during every day motion. This work aims to characterize the effect of fascicle deformation on axon selectivity and recruitment when electrically stimulated using hybrid modeling. The main framework consists of combining finite element modeling (FEM) and simulation environment NEURON. A suite of programs was developed to first populate a fascicle with axons followed by deforming the fascicle and rearranging axons accordingly. A model of the fascicle with an implanted electrode is simulated to find the electrical potential profile through FEM. The potential profile is then used to compare which axons are activated in the two conformations of the fascicle using NERUON.

ContributorsDileep, Devika (Author) / Abbas, James (Thesis director) / Sadleir, Rosalind (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05