Matching Items (12,145)
Filtering by

Clear all filters

152024-Thumbnail Image.png
Description
Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of

Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of performing work. Maintaining these practices can be difficult, because even though obvious benefits come with achieving these goals, an individual's willpower may not always be sufficient to sustain the required effort. This dissertation advocates addressing this problem by designing novel interfaces that provide people with new practices that are fun and enjoyable, thereby reducing the need for users to draw upon willpower when pursuing these long-term goals. To draw volitional usage, these practice-oriented interfaces can integrate key characteristics of existing activities, such as music-making and other hobbies, that are already known to draw voluntary participation over long durations. This dissertation makes several key contributions to provide designers with the necessary tools to create practice-oriented interfaces. First, it consolidates and synthesizes key ideas from fields such as activity theory, self-determination theory, HCI design, and serious leisure. It also provides a new conceptual framework consisting of heuristics for designing systems that draw new users, plus heuristics for making systems that will continue drawing usage from existing users over time. These heuristics serve as a collection of useful ideas to consider when analyzing or designing systems, and this dissertation postulates that if designers build these characteristics into their products, the resulting systems will draw more volitional usage. To demonstrate the framework's usefulness as an analytical tool, it is applied as a set of analytical lenses upon three previously-existing experiential media systems. To demonstrate its usefulness as a design tool, the framework is used as a guide in the development of an experiential media system called pdMusic. This system is installed at public events for user studies, and the study results provide qualitative support for many framework heuristics. Lastly, this dissertation makes recommendations to scholars and designers on potential future ways to examine the topic of volitional usage.
ContributorsWallis, Isaac (Author) / Ingalls, Todd (Thesis advisor) / Coleman, Grisha (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
152100-Thumbnail Image.png
Description
Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in

Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in answering imprecise queries. We try to use the social network of a person to answer his query. Our research aims at designing a framework that exploits the user's social network in order to maximize the answers for a given query. Exploiting an user's social network has several challenges. The major challenge is that the user's immediate social circle may not possess the answer for the given query, and hence the framework designed needs to carry out the query diffusion process across the network. The next challenge involves in finding the right set of seeds to pass the query to in the user's social circle. One other challenge is to incentivize people in the social network to respond to the query and thereby maximize the quality and quantity of replies. Our proposed framework is a mobile application where an individual can either respond to the query or forward it to his friends. We simulated the query diffusion process in three types of graphs: Small World, Random and Preferential Attachment. Given a type of network and a particular query, we carried out the query diffusion by selecting seeds based on attributes of the seed. The main attributes are Topic relevance, Replying or Forwarding probability and Time to Respond. We found that there is a considerable increase in the number of replies attained, even without saturating the user's network, if we adopt an optimal seed selection process. We found the output of the optimal algorithm to be satisfactory as the number of replies received at the interrogator's end was close to three times the number of neighbors an interrogator has. We addressed the challenge of incentivizing people to respond by associating a particular amount of points for each query asked, and awarding the same to people involved in answering the query. Thus, we aim to design a mobile application based on our proposed framework so that it helps in maximizing the replies for the interrogator's query by diffusing the query across his/her social network.
ContributorsSwaminathan, Neelakantan (Author) / Sundaram, Hari (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsZelenak, Kristen (Performer) / Detweiler, Samuel (Performer) / Rollefson, Justin (Performer) / Hong, Dylan (Performer) / Salazar, Nathan (Performer) / Feher, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsRyall, Blake (Performer) / Olarte, Aida (Performer) / Senseman, Stephen (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsUhrenbacher, Tina (Performer) / Creviston, Hannah (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22