Matching Items (12,148)
Filtering by

Clear all filters

ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
ContributorsZelenak, Kristen (Performer) / Detweiler, Samuel (Performer) / Rollefson, Justin (Performer) / Hong, Dylan (Performer) / Salazar, Nathan (Performer) / Feher, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
151964-Thumbnail Image.png
Description
5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose- dependently attenuated cue-primed reinstatement, without affecting cocaine-primed reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR agonist, to investigate whether these compounds interact to attenuate cocaine hyperlocomotion and Fos protein expression. Only the drug combination attenuated cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5- HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR agonism.
ContributorsPockros, Lara Ann (Author) / Neisewander, Janet L (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsRyall, Blake (Performer) / Olarte, Aida (Performer) / Senseman, Stephen (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151330-Thumbnail Image.png
Description
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The current study directly tested this hypothesis, examining the cognitive effects of androstenedione administration in a rodent model. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione (4 or 8 mg/kg daily). Rats were tested on a spatial working and reference memory maze battery including the water radial arm maze, Morris maze, and delay-match-to-sample task. Results showed that androstenedione at the highest dose impaired reference memory and working memory, including ability to maintain performance as memory demand was elevated. The latter was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. Glutamic acid decarboxylase (GAD) levels were measured in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system mediates androstenedione's cognitive impairments. Results showed that higher entorhinal cortex GAD levels were correlated with poorer Morris maze performance, regardless of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle deplete ovary, is detrimental to spatial learning, reference memory, and working memory, and that spatial reference memory performance might be related to the GABAergic system.
ContributorsCamp, Bryan Walter (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsUhrenbacher, Tina (Performer) / Creviston, Hannah (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22