Matching Items (20)
Filtering by

Clear all filters

153244-Thumbnail Image.png
Description
Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover

Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover some of the wasted

heat. Thermal conductivity measurement systems are an important part of the char-

acterization processes of thermoelectric materials. These systems must possess the

capability of accurately measuring the thermal conductivity of both bulk and thin-lm

samples at dierent ambient temperatures.

This paper discusses the construction, validation, and improvement of a thermal

conductivity measurement platform based on the 3-Omega technique. Room temperature

measurements of thermal conductivity done on control samples with known properties

such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide

(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.

These quantities were all within 8% of literature values. In addition, the thermal

conductivity of bulk SiO2 was measured as a function of temperature in a Helium-

4 cryostat from 75K to 250K. The results showed good agreement with literature

values that all fell within the error range of each measurement. The uncertainty in

the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system

was used to measure the room temperature thermal conductivity of a nanocomposite

composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,

matrix as a function of the concentration of In2Se3. The observed trend was in

qualitative agreement with the expected behavior.

i
ContributorsJaber, Abbas (Author) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2014
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151124-Thumbnail Image.png
Description
The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In this work, we studied the influence of 2MeV Helium ion

The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In this work, we studied the influence of 2MeV Helium ion irradiation with doses up to 5.2×1016 ions/cm2 on the tunneling behavior of Nb/Al/AlOx/Nb Josephson junctions. Structural and analytical TEM characterization, combined with SRIM modeling, indicates that over 4nm of intermixing occurred at the interfaces. EDX analysis after irradiation, suggests that the Al and O compositions from the barrier are collectively distributed together over a few nanometers. Surprisingly, the IV characteristics were largely unchanged. The normal resistance, Rn, increased slightly (<20%) after the initial dose of 3.5×1015 ions/cm2 and remained constant after that. This suggests that tunnel barrier electrical properties were not affected much, despite the significant changes in the chemical distribution of the barrier's Al and O shown in SRIM modeling and TEM pictures. The onset of quasi-particle current, sum of energy gaps (2Δ), dropped systematically from 2.8meV to 2.6meV with increasing dosage. Similarly, the temperature onset of the Josephson current dropped from 9.2K to 9.0K. This suggests that the order parameter at the barrier interface has decreased as a result of a reduced mean free path in the Al proximity layer and a reduction in the transition temperature of the Nb electrode near the barrier. The dependence of Josephson current on the magnetic field and temperature does not change significantly with irradiation, suggesting that intermixing into the Nb electrode is significantly less than the penetration depth.
ContributorsZhang, Tiantian (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
156208-Thumbnail Image.png
Description
In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or

In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or heating technologies to meet this need. The concept of thermal energy storage (TES), as noted by many authors, is a promising way to rectify indoor temperature fluctuations. Due to its high energy density and the use of latent energy, Phase Change Materials (PCMs) are an efficient choice to use as TES. A question that has not satisfactorily been addressed, however, is the optimum location of PCM. In other words, given a constant PCM mass, where is the best location for it in a building? This thesis addresses this question by positioning PCM to obtain maximum energy savings and peak time delay. This study is divided into three parts. The first part is to understand the thermal behavior of building surfaces, using EnergyPlus software. For analysis, a commercial prototype building model for a small office in Phoenix, provided by the U.S. Department of Energy, is applied and the weather location file for Phoenix, Arizona is also used. The second part is to justify the best location, which is obtained from EnergyPlus, using a transient grey box building model. For that we have developed a Resistance-Capacitance (RC) thermal network and studied the thermal profile of a building in Phoenix. The final part is to find the best location for PCMs in buildings using EnergyPlus software. In this part, the mass of PCM used in each location remains unchanged. This part also includes the impact of the PCM mass on the optimized location and how the peak shift varies. From the analysis, it is observed that the ceiling is the best location to install PCM for yielding the maximum reduction in HVAC energy consumption for a hot, arid climate like Phoenix.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
157445-Thumbnail Image.png
Description
Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for

Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work studies by experimentation, key process parameters involved in desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate (NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to effectively characterize synthesized products, and the measuring of FO performance for the individual hydrogels. FO performance was measured using single layers of NIPAM and NIPAM-SA respectively. The values of permeation flux obtained were compared to relevant published literature and it was found to be within reasonable range. Furthermore, a conceptual design for future large-scale implementation of this technology is proposed. It is proposed that perhaps more effort should focus on physical processes that have the ability to increase the low permeation flux of hydrogel driven FO desalination systems, rather than development of novel classes of hydrogels
ContributorsAbdullahi, Adnan None (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2019
157169-Thumbnail Image.png
Description
When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to

When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications.

To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when the desiccant is regenerated with waste or solar heat; however, the heat of regeneration is very large, as the water absorbed during dehumidification must be evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised above a certain temperature, could potentially replace traditional desiccants in dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm regeneration heat has the potential to be much lower than that of a traditional desiccant.

Models were created for a standard vapor compression air conditioning system, two desiccant systems, and two theoretical NIPAAm systems. All components were modeled for simplified steady state operation. For a moderate percent of water evaporated during regeneration, it was found that the NIPAAm systems perform better than standard vapor compression. When compared to the desiccant systems, the NIPAAm systems performed better at almost all percent evaporation values. The regeneration heat was modeled as if supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm would be even stronger.

Future work on NIPAAm dehumidification should focus on lowering the percent evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot exceed the lower critical solution temperature during dehumidification, indicating that a NIPAAm dehumidification system should be carefully designed such that the sorbent temperature is kept sufficiently low during dehumidification.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis advisor) / Phelan, Patrick (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2019
154713-Thumbnail Image.png
Description
This paper details ink chemistries and processes to fabricate passive microfluidic devices using drop-on-demand printing of tetraethyl-orthosilicate (TEOS) inks. Parameters space investigation of the relationship between printed morphology and ink chemistries and printing parameters was conducted to demonstrate that morphology can be controlled by adjusting solvents selection, TEOS concentration,

This paper details ink chemistries and processes to fabricate passive microfluidic devices using drop-on-demand printing of tetraethyl-orthosilicate (TEOS) inks. Parameters space investigation of the relationship between printed morphology and ink chemistries and printing parameters was conducted to demonstrate that morphology can be controlled by adjusting solvents selection, TEOS concentration, substrate temperature, and hydrolysis time. Optical microscope and scanning electron microscope images were gathered to observe printed morphology and optical videos were taken to quantify the impact of morphology on fluid flow rates. The microscopy images show that by controlling the hydrolysis time of TEOS, dilution solvents and the printing temperature, dense or fracture structure can be obtained. Fracture structures are used as passive fluidic device due to strong capillary action in cracks. At last, flow rate of passive fluidic devices with different thickness printed at different temperatures are measured and compared. The result shows the flow rate increases with the increase of device width and thickness. By controlling the morphology and dimensions of printed structure, passive microfluidic devices with designed flow rate and low fluorescence background are able to be printed.
ContributorsHuang, Yiwen (Author) / Hildreth, Owen (Thesis advisor) / Wang, Robert (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
155599-Thumbnail Image.png
Description
Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if

Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions.

The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.
ContributorsKemme, Nicholas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017
187787-Thumbnail Image.png
Description
Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat

Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat flux on a human body is becoming increasingly important for calculating human thermal comfort and heat safety in extreme conditions. Most often, radiant heat exchange between the human body and surroundings is quantified using mean radiant temperature, T_mrt. This value is commonly measured using globe or cylindrical radiometers. It is based on radiation absorbed by the surface of the radiometer, which can be calculated using a surface energy balance involving both convection and emitted radiation at steady state. This convection must be accounted for and is accomplished using a traditional heat transfer coefficient correlation with measured wind speed. However, the utilized correlations are based on wind tunnel measurements and do not account for any turbulence present in the air. The latter can even double the heat transfer coefficient, so not accounting for it can introduce major errors in T_mrt. This Thesis focuses on the development, and testing of a cost-effective heated cylinder to directly measure the convection heat transfer coefficient in field conditions, which can be used for accounting convection in measuring T_mrt using a cylindrical radiometer. An Aluminum cylinder of similar dimensions as that of a cylindrical radiometer was heated using strip heaters, and the surface temperature readings were recorded to estimate the convection heat transfer coefficient, h. Various tests were conducted to test this concept. It was observed that heated cylinders take significantly less time to reach a steady state and respond to velocity change quicker than existing regular-sized globe thermometers. It was also shown that, for accurate estimation of h, it is required to measure the outer surface temperature than the center temperature. Furthermore, the value calculated matches well in range with classic correlations that include velocity, showing proof of concept.
ContributorsGuddanti, Sai Susmitha (Author) / Rykaczewski, Konrad (Thesis advisor) / Vanos, Jennifer (Committee member) / Wang, Robert (Committee member) / Burke, Richard (Committee member) / Arizona State University (Publisher)
Created2023
189306-Thumbnail Image.png
Description
Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the

Expedited by the ongoing effects of the Covid-19 pandemic and the expanding portfolio of Arizona State University's online degree programs, this study undertakes the task of enriching the “Experimental Mechanical Engineering” course within ASU's online Bachelor of Mechanical Engineering curriculum. This thesis outlines the development of simulations accurately mirroring the characteristics and functionalities of water pump laboratory experiments, which previously necessitated on-site, group-based participation. The goal is for these simulations to serve as digital twins of the original equipment, allowing students to examine fundamental mechanical principles like the Bernoulli equation and Affinity Laws in a virtual, yet realistic setting. Furthermore, the simulations are designed to accommodate uncertainty calculations, replicating the instrument error (i.e., bias and precision uncertainty) inherent in the original water pump units. The methodology of this simulation design predominantly involves the use of MATLAB SimScape, chosen for its configurability and simplicity, with modifications made to match the original experiment data. Then, subsequent analysis of results between the simulation and experiment is conducted to facilitate the validation process. After executing the full laboratory procedure using the simulations, they displayed rapid operation and produced results that remained within boundaries of experimental uncertainty, it also faces several challenges, such as the inability to simulate the pump cavitation effect and the lack of animation. Future research should focus on addressing these limitations, thereby enhancing the model’s precision and extending its functionality to provide better visualization capabilities and exploration of pump cavitation effects. Furthermore, students’ feedback needs to be collected, since it is essential to assess and validate the effectiveness of this instructional approach.
ContributorsZhong, Ziming (Author) / Milcarek, Ryan J (Thesis advisor) / Wilbur, Joshua D (Thesis advisor) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2023