Matching Items (49)

Filtering by

Clear all filters

162001-Thumbnail Image.png

Computationally Efficient Object Detection Strategy from Water Surfaces with Specularity Removal

Description

Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to

Floating trash objects are very commonly seen on water bodies such as lakes, canals and rivers. With the increase of plastic goods and human activities near the water bodies, these trash objects can pile up and cause great harm to the surrounding environment. Using human workers to clear out these trash is a hazardous and time-consuming task. Employing autonomous robots for these tasks is a better approach since it is more efficient and faster than humans. However, for a robot to clean the trash objects, a good detection algorithm is required. Real-time object detection on water surfaces is a challenging issue due to nature of the environment and the volatility of the water surface. In addition to this, running an object detection algorithm on an on-board processor of a robot limits the amount of CPU consumption that the algorithm can utilize. In this thesis, a computationally low cost object detection approach for robust detection of trash objects that was run on an on-board processor of a multirotor is presented. To account for specular reflections on the water surface, we use a polarization filter and integrate a specularity removal algorithm on our approach as well. The challenges faced during testing and the means taken to eliminate those challenges are also discussed. The algorithm was compared with two other object detectors using 4 different metrics. The testing was carried out using videos of 5 different objects collected at different illumination conditions over a lake using a multirotor. The results indicate that our algorithm is much suitable to be employed in real-time since it had the highest processing speed of 21 FPS, the lowest CPU consumption of 37.5\% and considerably high precision and recall values in detecting the object.

Contributors

Agent

Created

Date Created
2021

161838-Thumbnail Image.png

Weakly-Supervised Visual-Retriever-Reader Pipeline for Knowledge-Based VQA Tasks

Description

Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great

Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress made in simple question tasks (e.g. object recognition), researchers start to shift their interests to the questions that require knowledge and reasoning. Knowledge-based VQA requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowledge corpus for retrieval. Existing work leverages different knowledge bases (e.g., ConceptNet and Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is hard to fairly compare models' performance. To address this issue, this paper collects a natural language knowledge base that can be used for any question answering (QA) system. Moreover, a Visual Retriever-Reader pipeline is proposed to approach knowledge-based VQA, where the visual retriever aims to retrieve relevant knowledge, and the visual reader seeks to predict answers based on given knowledge. The retriever is constructed with two versions: term based retriever which uses best matching 25 (BM25), and neural based retriever where the latest dense passage retriever (DPR) is introduced. To encode the visual information, the image and caption are encoded separately in the two kinds of neural based retriever: Image-DPR and Caption-DPR. There are also two styles of readers, classification reader and extraction reader. Both the retriever and reader are trained with weak supervision. The experimental results show that a good retriever can significantly improve the reader's performance on the OK-VQA challenge.

Contributors

Agent

Created

Date Created
2021

156036-Thumbnail Image.png

Perturbation Robust Representations of Topological Persistence Diagrams

Description

Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is

Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is attributed to the complementary information that topology provides, as well as availability of tools for computing topological summaries such as persistence diagrams. However, persistence diagrams are multi-sets of points and hence it is not straightforward to fuse them with features used for contemporary machine learning tools like deep-nets. In this paper theoretically well-grounded approaches to develop novel perturbation robust topological representations are presented, with the long-term view of making them amenable to fusion with contemporary learning architectures. The proposed representation lives on a Grassmann manifold and hence can be efficiently used in machine learning pipelines.

The proposed representation.The efficacy of the proposed descriptor was explored on three applications: view-invariant activity analysis, 3D shape analysis, and non-linear dynamical modeling. Favorable results in both high-level recognition performance and improved performance in reduction of time-complexity when compared to other baseline methods are obtained.

Contributors

Agent

Created

Date Created
2017

157926-Thumbnail Image.png

Hierarchical Manipulation for Constructing Free Standing Structures

Description

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints,

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of robotic manipulator arms.

The first part of this thesis develops and investigates new methods for addressing these problems through hierarchical task and motion planning for manipulation with a focus on autonomous construction of free-standing structures using precision-cut planks. These planks can be arranged in various orientations to design complex structures; reliably and autonomously building such structures from scratch is computationally intractable due to the long planning horizon and the infinite branching factor of possible grasps and placements that the robot could make.

An abstract representation is developed for this class of problems and show how pose generators can be used to autonomously compute feasible robot motion plans for constructing a given structure. The approach was evaluated through simulation and on a real ABB YuMi robot. Results show that hierarchical algorithms for planning can effectively overcome the computational barriers to solving such problems.

The second part of this thesis proposes a deep learning-based algorithm to identify critical regions for motion planning. Further investigation is done whether these learned critical regions can be translated to learn high-level landmark actions for automated planning.

Contributors

Agent

Created

Date Created
2019

157886-Thumbnail Image.png

Cognitive Mapping for Object Searching in Indoor Scenes

Description

Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively

Visual navigation is a multi-disciplinary field across computer vision, machine learning and robotics. It is of great significance in both research and industrial applications. An intelligent agent with visual navigation ability will be capable of performing the following tasks: actively explore in environments, distinguish and localize a requested target and approach the target following acquired strategies. Despite a variety of advances in mobile robotics, enabling an autonomous with above-mentioned abilities is still a challenging and complex task. However, the solution to the task is very likely to accelerate the landing of assistive robots.

Reinforcement learning is a method that trains autonomous robot based on rewarding desired behaviors to help it obtain an action policy that maximizes rewards while the robot interacting with the environment. Through trial and error, an agent learns sophisticated and skillful strategies to handle complex tasks in the environment. Inspired by navigation procedures of human beings that when navigating through environments, humans reason about accessible spaces and geometry of the environment a lot based on first-person view, figure out the destination and then ease over, this work develops a model that maps from pixels to actions and inherently estimate the target as well as the free-space map. The model has three major constituents: (i) a cognitive mapper that maps the topologic free-space map from first-person view images, (ii) a target recognition network that locates a desired object and (iii) an action policy deep reinforcement learning network. Further, a planner model with cascade architecture based on multi-scale semantic top-down occupancy map input is proposed.

Contributors

Agent

Created

Date Created
2019

Language Conditioned Self-Driving Cars Using Environmental Object Descriptions For Controlling Cars

Description

Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field,

Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more safe and efficient AI agents that can navigate through our cities. However, driving is a very complex task to master even for a human, let alone the challenges in developing robots to do the same. It requires attention and inputs from the surroundings of the car, and it is nearly impossible for us to program all the possible factors affecting this complex task. As a solution, imitation learning was introduced, wherein the agents learn a policy, mapping the observations to the actions through demonstrations given by humans. Through imitation learning, one could easily teach self-driving cars the expected behavior in many scenarios. Despite their autonomous nature, it is undeniable that humans play a vital role in the development and execution of safe and trustworthy self-driving cars and hence form the strongest link in this application of Human-Robot Interaction. Several approaches were taken to incorporate this link between humans and self-driving cars, one of which involves the communication of human's navigational instruction to self-driving cars. The communicative channel provides humans with control over the agent’s decisions as well as the ability to guide them in real-time. In this work, the abilities of imitation learning in creating a self-driving agent that can follow natural language instructions given by humans based on environmental objects’ descriptions were explored. The proposed model architecture is capable of handling latent temporal context in these instructions thus making the agent capable of taking multiple decisions along its course. The work shows promising results that push the boundaries of natural language instructions and their complexities in navigating self-driving cars through towns.

Contributors

Agent

Created

Date Created
2021

Online Prediction for Vision-Based Active Pursuit Using a Domain Agnostic Offline Motion Model

Description

In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a

In a pursuit-evasion setup where one group of agents tracks down another adversarial group, vision-based algorithms have been known to make use of techniques such as Linear Dynamic Estimation to determine the probable future location of an evader in a given environment. This helps a pursuer attain an edge over the evader that has conventionally benefited from the uncertainty of the pursuit. The pursuer can utilize this knowledge to enable a faster capture of the evader, as opposed to a pursuer that only knows the evader's current location. Inspired by the function of dorsal anterior cingulate cortex (dACC) neurons in natural predators, the use of a predictive model that is built using an encoder-decoder Long Short-Term Memory (LSTM) Network and can produce a more accurate estimate of the evader's future location is proposed. This enables an even quicker capture of a target when compared to previously used filtering-based methods. The effectiveness of the approach is evaluated by setting up these agents in an environment based in the Modular Open Robots Simulation Engine (MORSE). Cross-domain adaptability of the method, without the explicit need to retrain the prediction model is demonstrated by evaluating it in another domain.

Contributors

Agent

Created

Date Created
2021

161732-Thumbnail Image.png

Computer Vision: Improving Detection and Tracking for Occluded and Blurry Settings

Description

Computer vision and tracking has become an area of great interest for many reasons, including self-driving cars, identification of vehicles and drivers on roads, and security camera monitoring, all of which are expanding in the modern digital era. When working

Computer vision and tracking has become an area of great interest for many reasons, including self-driving cars, identification of vehicles and drivers on roads, and security camera monitoring, all of which are expanding in the modern digital era. When working with practical systems that are constrained in multiple ways, such as video quality or viewing angle, algorithms that work well theoretically can have a high error rate in practice. This thesis studies several ways in which that error can be minimized.This thesis describes an application in a practical system. This project is to detect, track and count people entering different lanes at an airport security checkpoint, using CCTV videos as a primary source. This thesis improves an existing algorithm that is not optimized for this particular problem and has a high error rate when comparing the algorithm counts with the true volume of users.
The high error rate is caused by many people crowding into security lanes at the same time. The camera from which footage was captured is located at a poor angle, and thus many of the people occlude each other and cause the existing algorithm to miss people. One solution is to count only heads; since heads are smaller than a full body, they will occlude less, and in addition, since the camera is angled from above, the heads in back will appear higher and will not be occluded by people in front. One of the primary improvements to the algorithm is to combine both person detections and head detections to improve the accuracy.
The proposed algorithm also improves the accuracy of detections. The existing algorithm used the COCO training dataset, which works well in scenarios where people are visible and not occluded. However, the available video quality in this project was not very good, with people often blocking each other from the camera’s view. Thus, a different training set was needed that could detect people even in poor-quality frames and with occlusion. The new training set is the first algorithmic improvement, and although occasionally performing worse, corrected the error by 7.25% on average.

Contributors

Agent

Created

Date Created
2021

161869-Thumbnail Image.png

Neuro Symbolic Artificial Intelligence Pioneer to Overcome the Limits of Machine Learn

Description

With the recent boom in artificial intelligence, various learning methods and information are pouring out. However, there are many abbreviations and jargons to read without knowing the history and development trend of artificial intelligence, which is a barrier to entry.

With the recent boom in artificial intelligence, various learning methods and information are pouring out. However, there are many abbreviations and jargons to read without knowing the history and development trend of artificial intelligence, which is a barrier to entry. This study predicts the future development direction by synthesizing the concept of Neuro symbolic AI, which is a new direction of artificial intelligence, the history of artificial intelligence from which such concept came out, and applied studies, and by synthesizing and summarizing the limitations of the current research projects. It is a guide for those who want to study neural symbols. In this paper, it describes the history of artificial intelligence and the historical background of the emergence of neural symbols. In the development trend, the challenges faced by the neural symbolic, measures to overcome, and the Neuro Symbolic A.I. applied in various fields are described. (Knowledge based Question Answering, VQA(Visual Question Answering), image retrieve, etc.). It predicts the future development direction of neuro symbolic artificial intelligence based on the contents obtained through previous studies.

Contributors

Agent

Created

Date Created
2021

161939-Thumbnail Image.png

Learning Complex Behaviors from Simple Ones: An analysis of Behavior-based Modular Design for RL Agents

Description

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.

Contributors

Agent

Created

Date Created
2021