Matching Items (50)
Filtering by

Clear all filters

157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
153875-Thumbnail Image.png
Description
This is a two-part thesis.

Part 1 of this thesis investigates the influence of spatial temperature distribution on the accuracy of performance data of photovoltaic (PV) modules in outdoor conditions and provides physical approaches to improve the spatial temperature distribution of the test modules so an accurate performance data can be

This is a two-part thesis.

Part 1 of this thesis investigates the influence of spatial temperature distribution on the accuracy of performance data of photovoltaic (PV) modules in outdoor conditions and provides physical approaches to improve the spatial temperature distribution of the test modules so an accurate performance data can be obtained in the field. Conventionally, during outdoor performance testing, a single thermocouple location is used on the backsheet or back glass of a test module. This study clearly indicates that there is a large spatial temperature difference between various thermocouple locations within a module. Two physical approaches or configurations were experimented to improve the spatial temperature uniformity: thermally insulating the inner and outer surface of the frame; backsheet and inner surface of the frame. All the data were compared with un-insulated conventional configuration. This study was performed in an array setup of six modules under two different preconditioning electrical configurations, Voc and MPPT over several clear sunny days. This investigation concludes that the best temperature uniformity and the most accurate I-V data can be obtained only by thermally insulating the inner and outer frame surfaces or by using the average of four thermocouple temperatures, as specified in IEC 61853-2, without any thermal insulation.

Part 2 of this thesis analyzes the field data obtained from old PV power plants using various statistical techniques to identify the most influential degradation modes on fielded PV modules in two different climates: hot-dry (Arizona); cold-dry (New York). Performance data and visual inspection data of 647 modules fielded in five different power plants were analyzed. Statistical tests including hypothesis testing were carried out to identify the I-V parameter(s) that are affected the most. The affected performance parameters (Isc, Voc, FF and Pmax) were then correlated with the defects to determine the most dominant defect affecting power degradation. Analysis indicates that the cell interconnect discoloration (or solder bond deterioration) is the dominant defect in hot-dry climate leading to series resistance increase and power loss, while encapsulant delamination is being the most dominant defect in cold-dry climate leading to cell mismatch and power loss.
ContributorsUmachandran, Neelesh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2015
153789-Thumbnail Image.png
Description
This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules

This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules.

Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives.

The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.
ContributorsRajasekar, Vidyashree (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
154659-Thumbnail Image.png
Description
In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due

In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties.
ContributorsRaupp, Christopher (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154736-Thumbnail Image.png
Description
Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power

Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power (CSP). Global horizontal insolation (GHI) data are most commonly available of any solar radiation measurement, yet these data cannot be directly applied to solar power generator estimation because solar PV panels and solar CSP collectors are not parallel to the earth’s surface. In absence of additional measured data, GHI data may be broken down into its constituent parts—diffuse radiation and beam radiation—using statistical techniques that incorporate explanatory variables such as the clearness index. This study provides a suite of methods and regression models to estimate diffuse radiation as a function of various explanatory variables using both piecewise and continuous fits. Regression analyses using the clearness index are completed for seven locations in the United States and four locations in other regions of the world. The multi-site analysis indicates that models developed using training data for a single location perform best in that location, yet general models can be created that perform reasonably well across any locality and then applied to estimate solar resource availability in new locations around the world. Results from the global and site-specific models perform better than the existing models in literature and indicate that models perform different in different sky conditions e.g. clear or cloudy sky. Results also show that continuous models perform equivalent or better than the piecewise models. Newly generated piecewise models showed improvement over some intervals in the clearness index. A combination of fits from this study and existing literature was used to improve overall performance of modeling techniques used in diffuse radiation estimation. Germany was selected for more detailed studies of a single case study using the clearness index, ambient temperature, relative humidity, and absolute humidity as explanatory variables. Clearness index is the most important variable for diffuse radiation calculation whereas the relative humidity and the temperature are the secondary variable for improving calculation. Absolute humidity plays similar role as temperature in improving the calculation on the other hand relative humidity improves it very slightly over the absolute humidity and temperature.
ContributorsSingh, Uday P (Author) / Johnson, Nathan (Thesis advisor) / Rogers, Bradley (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2016
154876-Thumbnail Image.png
Description
The deposition of airborne dust, especially in desert conditions, is very problematic as it leads to significant loss of power of photovoltaic (PV) modules on a daily basis during the dry period. As such, PV testing laboratories around the world have been trying to set up soil deposition stations to

The deposition of airborne dust, especially in desert conditions, is very problematic as it leads to significant loss of power of photovoltaic (PV) modules on a daily basis during the dry period. As such, PV testing laboratories around the world have been trying to set up soil deposition stations to artificially deposit soil layers and to simulate outdoor soiling conditions in an accelerated manner. This thesis is a part of a twin thesis. The first thesis, authored by Shanmukha Mantha, is associated with the designing of an artificial soiling station. The second thesis (this thesis), authored by Darshan Choudhary, is associated with the characterization of the deposited soil layers. The soil layers deposited on glass coupons and one-cell laminates are characterized and presented in this thesis. This thesis focuses on the characterizations of the soil layers obtained in several soiling cycles using various techniques including current-voltage (I-V), quantum efficiency (QE), compositional analysis and optical profilometry. The I-V characterization was carried out to determine the impact of soil layer on current and other performance parameters of PV devices. The QE characterization was carried out to determine the impact of wavelength dependent influence of soil type and thickness on the QE curves. The soil type was determined using the compositional analysis. The compositional data of the soil is critical to determine the adhesion properties of the soil layers on the surface of PV modules. The optical profilometry was obtained to determine the particle size and distribution. The soil layers deposited using two different deposition techniques were characterized. The two deposition techniques are designated as “dew” technique and “humidity” technique. For the same deposition time, the humidity method was determined to deposit the soil layer at lower rates as compared to the dew method. Two types of deposited soil layers were characterized. The first type layer was deposited using a reference soil called Arizona (AZ) dust. The second type layer was deposited using the soil which was collected from the surface of the modules installed outdoor in Arizona. The density of the layers deposited using the surface collected soil was determined to be lower than AZ dust based layers for the same number of deposition cycles.
ContributorsChoudhary, Darshan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley Barney (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
154854-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules is affected by external factors such as irradiance, wind speed and ambient temperature as well as internal factors like material properties and design properties. These factors can make a difference in the operating temperatures between cells within a module and between modules within

The operating temperature of photovoltaic (PV) modules is affected by external factors such as irradiance, wind speed and ambient temperature as well as internal factors like material properties and design properties. These factors can make a difference in the operating temperatures between cells within a module and between modules within a plant. This is a three-part thesis.

Part 1 investigates the behavior of temperature distribution of PV cells within a module through outdoor temperature monitoring under various operating conditions (Pmax, Voc and Isc) and examines deviation in the temperature coefficient values pertaining to this temperature variation. ANOVA, a statistical tool, was used to study the influence of various factors on temperature variation. This study also investigated the thermal non-uniformity affecting I-V parameters and performance of four different PV technologies (crystalline silicon, CdTe, CIGS, a-Si). Two new approaches (black-colored frame and aluminum tape on back-sheet) were implemented in addition to the two previously-used approaches (thermally insulating the frame, and frame and back sheet) to study temperature uniformity improvements within c-Si PV modules on a fixed latitude-tilt array. This thesis concludes that frame thermal insulation and black frame help reducing thermal gradients and next best viable option to improve temperature uniformity measurements is by using average of four thermocouples as per IEC 61853-2 standard.

Part 2 analyzes the temperature data for two power plants (fixed-tilt and one-axis) to study the temperature variation across the cells in a module and across the modules in a power plant. The module placed in the center of one-axis power plant had higher temperature, whereas in fixed-tilt power plant, the module in north-west direction had higher temperatures. Higher average operating temperatures were observed in one-axis tracking as compared to the fixed-tilt PV power plant, thereby expected to lowering their lifetime.

Part 3 focuses on determination of a thermal model coefficients, using parameters similar to Uc and Uv thermal loss factors used in PVsyst, for modules of four different PV technologies experiencing hot-desert climate conditions by statistically correlating a year-long monitored data. Thermal models help to effectively quantity factors influencing module temperatures to estimate performance and energy models.
ContributorsPavgi, Ashwini (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154951-Thumbnail Image.png
Description
Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting

Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting defects in the PV modules. As many as 86 different defects can occur in a PV module. One of the major defects that can cause significant power loss is the interconnect metallization system (IMS) degradation which is the focus of this thesis. The IMS is composed of cell-interconnect (cell-ribbon interconnect) and string-interconnect (ribbon-ribbon interconnect). The cell interconnect is in turn composed of silver metallization (fingers and busbars) and solder bonds between silver busbar and copper ribbon. Weak solder bonding between copper ribbon and busbar of a cell results in increase of series resistance that in turn affects the fill factor causing a power drop. In this thesis work, the results obtained from various non-destructive and destructive experiments performed on modules exposed in three different climates (Arizona - Hot and Dry, Mexico - Warm and Humid, and California - Temperate) are presented. These experiments include light I-V measurements, dark I-V measurements, infrared imaging, extraction of test samples from the modules, peel strength measurements and four-point resistance measurements. The extraction of test samples was performed using a mechanical method and a chemical method. The merits and demerits of these two methods are presented. A drop of 10.33% in fill factor was observed for a 0.05Ω increase in the series resistance of the modules investigated in this work. Different combinations in a cell that can cause series resistance increase were considered and their effect on fill factor were observed using four-point probe experiments. Peel test experiments were conducted to correlate the effect of series resistance on the ribbon peel strength. Finally, climate specific thermal modelling was performed for 4 different sites over 20 years in order to calculate the accumulated thermal fatigue and also to evaluate its correlation, if any, with the increase of series resistance.
ContributorsTummala, Abhishiktha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154908-Thumbnail Image.png
Description
Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV

Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These properties influence the extent of performance (current) loss, spectral loss and adhesion of soil particles on the surface of the PV modules. To address this uncontrolled environmental issues, research institutes around the world have started designing indoor artificial soiling stations to deposit soil layers in various controlled environments using reference soil samples and/or soil samples collected from the surface of PV modules installed in the locations of interest. This thesis is part of a twin thesis. The first thesis (this thesis) authored by Shanmukha Mantha is related to the development of soiling stations and the second thesis authored by Darshan Choudhary is associated with the characterization of the soiled samples (glass coupons, one-cell PV coupons and multi-cell PV coupons). This thesis is associated with the development of three types of indoor artificial soiling deposition techniques replicating the outside environmental conditions to achieve required soil density, uniformity and other required properties. The three types of techniques are: gravity deposition method, dew deposition method, and humid deposition method. All the three techniques were applied on glass coupons, single-cell PV laminates containing monocrystalline silicon cells and multi-cell PV laminates containing polycrystalline silicon cells. The density and uniformity for each technique on all targets are determined. In this investigation, both reference soil sample (Arizona road dust, ISO 12103-1) and the soil samples collected from the surface of installed PV modules were used. All the three techniques are compared with each other to determine the best method for uniform deposition at varying thickness levels. The advantages, limitations and improvements made in each technique are discussed.
ContributorsMantha, Shanmukha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
155103-Thumbnail Image.png
Description
The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, humidity, and UV, the stress parameters) and different empirical rate models such as Arrhenius, Peck, Klinger and modified Peck models. For the indoor accelerated data, three sets of mini-modules with the same construction/manufacturer as that of the outdoor fielded modules were subjected indoor accelerated weathering stress and the test data were analyzed. The indoor accelerated test was carried out in a weathering chamber at the chamber temperature of 20°C, chamber relative humidity of 65%, and irradiance of 1 W/m2 at 340nm using a xenon arc lamp. Typically, to obtain activation energy, the test samples are stressed at two (or more) temperatures in two (or more) chambers. However, in this work, it has been attempted to do the acceleration testing of eight mini-modules at multiple temperatures using a single chamber. Multiple temperatures in a single chamber were obtained using thermal insulators on the back of the mini-modules. Depending on the thickness of the thermal insulators with constant solar gain from the xenon lamp, different temperatures on the test samples were achieved using a single weathering chamber. The Isc loss and temperature of the mini-modules were continuously monitored using a data logger. Also, the mini-modules were taken out every two weeks and various characterization tests such as IV, QE, UV fluorescence and reflectance were carried out. Activation energy from the indoor accelerated tests was calculated using the short circuit current degradation rate and operating temperatures of the mini-modules. The activation energy for the encapsulant browning obtained from the outdoor field data and the indoor accelerated data are compared and analyzed in this work.
ContributorsVeerendra Kumar, Deepak Jain (Author) / Tamizhmani, Govindasamy (Committee member) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016