Matching Items (2)
Filtering by

Clear all filters

151512-Thumbnail Image.png
Description
Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7

Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7 μm achievable using lattice matched GaInAs. The large lattice mismatch required to reach the extended wavelengths results in photodetector materials that contain a large number of misfit dislocations. The low quality of these materials results in a large nonradiative Shockley Read Hall generation/recombination rate that is manifested as an undesirable large thermal noise level in these photodetectors. This work focuses on utilizing the different band structure engineering methods to design more efficient devices on InP substrates. One prospective way to improve photodetector performance at the extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that have a type-II band alignment, where the ground state transition energy of the superlattice is smaller than the bandgap of either constituent material. Over the extended wavelength range of 2 to 3 μm this superlattice structure has an optimal period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, respectively. In using a type-II superlattice to extend the cutoff wavelength there is a tradeoff between the wavelength reached and the electron-hole wavefunction overlap realized, and hence absorption coefficient achieved. This tradeoff and the subsequent reduction in performance can be overcome by two methods: adding bismuth to this type-II material system; applying strain on both layers in the system to attain strain-balanced condition. These allow the valance band alignment and hence the wavefunction overlap to be tuned independently of the wavelength cutoff. Adding 3% bismuth to the GaInAs constituent material, the resulting lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489superlattice realizes a 50% larger absorption coefficient. While as, similar results can be achieved with strain-balanced condition with strain limited to 1.9% on either layer. The optimal design rules derived from the different possibilities make it feasible to extract superlattice period thickness with the best absorption coefficient for any cutoff wavelength in the range.  
ContributorsSharma, Ankur R (Author) / Johnson, Shane (Thesis advisor) / Goryll, Michael (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
158617-Thumbnail Image.png
Description
Kuwait is committed to implementing the Kyoto Protocol in “Vision 2035” to reduce greenhouse gas emissions by shifting to the use of wind and solar energies [1]. The specific goal of the Vision 2035 is for renewables to comprise 15% of Kuwait’s electrical generation by 2030. Wind and solar are

Kuwait is committed to implementing the Kyoto Protocol in “Vision 2035” to reduce greenhouse gas emissions by shifting to the use of wind and solar energies [1]. The specific goal of the Vision 2035 is for renewables to comprise 15% of Kuwait’s electrical generation by 2030. Wind and solar are abundant in Kuwait and can easily provide 15% of the total electrical generation. However, there are three significant obstacles. The first is Kuwait currently depends heavily on rapidly diminishing fossil fuels which are the major sources of CO2, NOx, and SOx emissions. Unfortunately, current plans are to build two conventional power stations by 2024. The purpose is to cover the energy needs for growing population. The second problem is that Kuwait has a very small land area. Consequently, there is limited space to build new utility-scale renewable power stations. The third issue is the low electricity tariff provides little incentive for the population to save energy. Offshore wind farms have the potential to provide thousands of GWh/yr to accomplish the goals of Vision 2035. Kuwait has a vast untapped supply of offshore wind energy. Specifically, there are eight offshore locations in which 50 turbines could be built each, for a total of 400 turbines. Using 4.2 MW turbines, this would provide 1.68 GW of wind energy, and increase the renewable portion of the electrical energy production to 13.93% (including Shagaya renewable park). Installing battery storage with the proposed wind turbines could provide fast ramp response which would serve to complement existing power production on Kuwait’s grid. In this work, six different turbines with different sizes are considered from 2.5 MW to 4.2 MW (from well-known manufacturers, such as, Nordex and Vestas), but ultimately 4.2 MW turbines are recommended. Data for this study has been supplied by: A) Civil Aviation -- temperature and wind speed, B) Ministry of Electricity and Water (MEW) -- electricity data, and C) Public Authority for Civil Information -- population data.
ContributorsAlotaibi, Abdullah Saqer (Author) / Calhoun, Ronald (Thesis advisor) / Kitchen, Jennifer (Thesis advisor) / Roedel, Ronald (Committee member) / Mayyas, Abdul Ra'ouf (Committee member) / Arizona State University (Publisher)
Created2020