Matching Items (67)
Filtering by

Clear all filters

154206-Thumbnail Image.png
Description
Gas turbine efficiency has improved over the years due to increases in compressor

pressure ratio and turbine entry temperature (TET) of main combustion gas, made viable

through advancements in material science and cooling techniques. Ingestion of main

combustion gas into the turbine rotor-stator disk cavities can cause major damage to the

gas turbine. To

Gas turbine efficiency has improved over the years due to increases in compressor

pressure ratio and turbine entry temperature (TET) of main combustion gas, made viable

through advancements in material science and cooling techniques. Ingestion of main

combustion gas into the turbine rotor-stator disk cavities can cause major damage to the

gas turbine. To counter this ingestion, rim seals are installed at the periphery of turbine

disks, and purge air extracted from the compressor discharge is supplied to the disk

cavities. Optimum usage of purge air is essential as purge air extraction imparts a penalty on turbine efficiency and specific fuel consumption.

In the present work, experiments were conducted in a newly constructed 1.5-stage

axial flow air turbine featuring vanes and blades to study main gas ingestion. The disk

cavity upstream of the rotor, the 'front cavity', features a double seal with radial clearance

and axial overlap at its rim. The disk cavity downstream of the rotor, the 'aft cavity', features a double seal at its rim but with axial gap. Both cavities contain a labyrinth seal radially inboard; this divides each disk cavity into an 'inner cavity' and a 'rim cavity'.

Time-averaged static pressure at various locations in the main gas path and disk

cavities, and tracer gas (CO2) concentration at different locations in the cavities were

measured. Three sets of experiments were carried out; each set is defined by the main air flow rate and rotor speed. Each of the three sets comprises of four different purge air flow rates, low to high.

The mass flow rate of ingested main gas into the front and aft rim cavities is

reported at the different purge air flow rates, for the three experiment sets. For the present stage configuration, it appears that some ingestion persisted into both the front and aft rim cavities even at high purge air flow rates. On the other hand, the front and aft inner cavity were completely sealed at all purge flows.
ContributorsMichael, Mukilan Sebastiraj (Author) / Roy, Ramendra P (Thesis advisor) / Mignolet, Marc P (Thesis advisor) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2015
157692-Thumbnail Image.png
Description
Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing

Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing in fabricating polymer heat exchangers and estimate their effectiveness as a heat transfer device. Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Stereolithography (SLA) are the three 3-d printing techniques that are explored for their feasibility in manufacturing heat exchangers. The research also explores a triply periodic minimal structure–the gyroid, as a heat exchanger design. The performance of the gyroid heat exchanger was studied using experiments. The main parameters considered for the experiments were heat transfer rate, effectiveness and pressure drop. From the results obtained it can be inferred that using polymers in heat exchangers helps reducing corrosion and fouling problems, but it affects the effectiveness of the heat exchangers. For our design, the maximum effectiveness achieved was 0.1. The pressure drop for the heat exchanger was observed to decrease with an increase in flow rate and the maximum pressure drop measured was 0.88 psi for a flow rate of 5 LPM.
ContributorsDanayat, Swapneel Shailesh (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2019
157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
158614-Thumbnail Image.png
Description
This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and bearing to every other neighbor agent in the

swarm. From this

This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and bearing to every other neighbor agent in the

swarm. From this information, I propose a lightweight method for sensor coverage

of an unknown area based on the work of Sameera Poduri. I also show that this

technique performs well with limited calibration distances.
ContributorsMulford, Philip (Author) / Das, Jnaneshwar (Thesis advisor) / Takahashi, Timothy (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2020
158882-Thumbnail Image.png
Description
The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of

The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of Indigenous lives. A relatively recent pushback from Indigenous peoples led to the slow reclamation of sovereignty, including in the United States. Revamped federal Indian programs allegedly promote tribal self-determination, yet they paradoxically serve a vast quantity of cultures through singular blanket programs that are blind to the cultural component of Indigenous identity - the centerfold of colonial aggression for centuries. The U.S. Department of Housing and Urban Development’s Office of Public and Indian Housing is no exception, using a Western framework to provide generic services that neither serve cultural needs nor are tailored to the specific environment traditional homes were historically and epistemologically suited for. This research analyzes the successes of new programs as well as the failures of the federal government to conduct responsible research and promote the authentic self-determination of tribes in terms of housing and urban development. It also considers the successes and failures of tribes to effectively engage in program reformation negotiation, community planning, and accountability measures to ensure their communities are served with enough culturally-appropriate, sustainable housing without mistrusting their own housing entities. Solutions for revising this service gap are proposed, adhering to a framework that centers diverse cultural values, community input, and functional design to increase each tribe’s implementation of self-determination in HUD housing programs.
ContributorsDeVault, Kayla (Author) / Martinez, David (Thesis advisor) / Hale, Michelle (Thesis advisor) / Phelan, Patrick (Committee member) / Dalla Costa, Wanda (Committee member) / Arizona State University (Publisher)
Created2020
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158261-Thumbnail Image.png
Description
The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis.
ContributorsDasinor, Emmanuel (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2020
158377-Thumbnail Image.png
Description
In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to

In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents.
ContributorsObeng-Ampomah, Terry (Author) / Phelan, Patrick (Thesis advisor) / Lackner, Klaus (Committee member) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020
158380-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.
ContributorsPrilliman, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158333-Thumbnail Image.png
Description
About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research

About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research aims to preliminarily investigate the actual efficiency which can be obtained through experimental data and compare that to the Carnot or theoretical maximum efficiency. The actual efficiency is investigated through three approaches. However, only the efficiency results from the second method are validated since the other approaches are based on a complete actual cycle which was not achieved for the engine. The efficiency of the thermal hydraulic engine is found to be in the range of 0.5% to 2.2% based on the second method which relies on the boundary work by the piston. The heating and cooling phases of the engine’s operation are viewed on both the T-s (temperature-entropy) and p-v (pressure-volume) diagrams. The Carnot efficiency is also found to be 13.7% from a temperature difference of 46.20C based on the measured experimental data. It is recommended that the thermodynamic cycle and efficiency investigation be repeated using an improved heat exchanger design to reduce energy losses and gains during both the heating and cooling phases. The temperature of CO2 can be measured through direct contact with the thermocouple and pressure measurements can be improved using a digital pressure transducer for the thermodynamic cycle investigation.
ContributorsManford, David (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020