Matching Items (50)
Filtering by

Clear all filters

149396-Thumbnail Image.png
Description
Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing

Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing modules an accurate acceleration factor cannot be determined for use in ALT. By observing modules that have been aged in the field, a comparison can be made with modules undergoing accelerated testing. In this study an investigation on about 1900 aged (10-17 years) grid-tied PV modules installed in the desert climatic condition of Arizona was undertaken. The investigation was comprised of a check sheet that documented any visual defects and their severity, infrared (IR) scanning, and current-voltage (I-V) curve measurements. After data was collected on modules, an analysis was performed to classify the failure modes and to determine the annual performance degradation rates.
ContributorsSuleske, Adam Alfred (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
149345-Thumbnail Image.png
Description
Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance

Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance of BAPV systems and can reduce power output by as much as 10 to 20%. The traditional method of minimizing the operating temperature of BAPV modules has been to include a suitable air gap for ventilation between the rooftop and the modules. There has been research done at Arizona State University (ASU) which investigates the optimum air gap spacing on sufficiently spaced (2-6 inch vertical; 2-inch lateral) modules of four columns. However, the thermal modeling of a large continuous array (with multiple modules of the same type and size and at the same air gap) had yet to be done at ASU prior to this project. In addition to the air gap effect analysis, the industry is exploring different ways of extracting the heat from PV modules including hybrid photovoltaic-thermal systems (PV/T). The goal of this project was to develop a thermal model for a small residential BAPV array consisting of 12 identical polycrystalline silicon modules at an air gap of 2.5 inches from the rooftop. The thermal model coefficients are empirically derived from a simulated field test setup at ASU and are presented in this thesis. Additionally, this project investigates the effects of cooling the array with a 40-Watt exhaust fan. The fan had negligible effect on power output or efficiency for this 2.5-inch air gap array, but provided slightly lower temperatures and better temperature uniformity across the array.
ContributorsHrica, Jonathan Kyler (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
149383-Thumbnail Image.png
Description
Power rating photovoltaic modules at six irradiance and four temperature matrix levels of IEC 61853-1 draft standard is one of the most important requirements to accurately predict energy production of photovoltaic modules at different climatic conditions. Two studies were carried out in this investigation: a measurement repeatability study and a

Power rating photovoltaic modules at six irradiance and four temperature matrix levels of IEC 61853-1 draft standard is one of the most important requirements to accurately predict energy production of photovoltaic modules at different climatic conditions. Two studies were carried out in this investigation: a measurement repeatability study and a translation procedure validation study. The repeatability study was carried out to define a testing methodology that allows generating repeatable power rating results under outdoor conditions. The validation study was carried out to validate the accuracy of the four translation procedures: the first three procedures are from the IEC 60891 standard and the fourth procedure is reported by NREL. These translation procedures are needed to translate the measured data from the actual test conditions to the reporting rating conditions required by the IEC 61853-1 draft standard. All the measurements were carried out outdoors on clear days using a manual, 2-axis tracker, located in Mesa/Tempe, Arizona. Four module technologies were investigated: crystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide. The modules were cooled and then allowed to naturally warm up to obtain current-voltage data at different temperatures. Several black mesh screens with a wide range of transmittance were used for varying irradiance levels. From the measurements repeatability study, it was determined that: (i) a certain minimum distance (2 inches) should be maintained between module surface and the screen surface; (ii) the reference cell should be kept outside the screen (calibrated screen) as opposed to inside the screen (uncalibrated screen); and (iii) the air mass should not exceed 2.5. From the translation procedure validation study, it was determined that the accuracy of the translation procedure depends on the irradiance and temperature range of translation. The difference between measured and translatet power at maximum power point (Pmax) is determined to be less than 3% for all the technologies, all the irradiance/ temperature ranges investigated and all the procedures except Procedure 2 of IEC 60891 standard. For the Procedure 2, the difference was found to fall between 3% and 17% depending on the irradiance range used for the translation. The difference of 17% is very large and unacceptable. This work recommends reinvestigating the cause for this large difference for Procedure 2. Finally, a complete power rating matrix for each of the four module technologies has been successfully generated as per IEC 61853-1 draft standard.
ContributorsPaghasian, Karen (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Madakannan, Arunachalandar (Committee member) / Macia, Narciso F. (Committee member) / Arizona State University (Publisher)
Created2010
187539-Thumbnail Image.png
Description
This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key

This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key stresses, such as temperature, to forecast the failure modes by 2- 7 times in advance depending on the activation energy of the degradation mechanism (i.e., 10th year reliability issues can potentially be predicted in the 2nd year itself for an acceleration factor of 5). In this outdoor combined accelerated stress study, the temperatures of test modules were increased (by 16-19℃ compared to control modules) using thermal insulations on the back of the modules. All other conditions (ambient temperature, humidity, natural sunlight, wind speed, wind direction, and tilt angle) were left constant for both test modules (with back thermal insulation) and control modules (without thermal insulation). In this study, a total of sixteen 4-cell modules with two different construction types (glass/glass [GG] and glass/backsheet [GB]) and two different encapsulant types (ethylene vinyl acetate [EVA] and polyolefin elastomer [POE]), were investigated at both sites with eight modules at each site (four insulated and four non-insulated modules at each site). All the modules were extensively characterized before installation in the field and after field exposure over two years. The methods used for characterizing the devices included I-V (current-voltage curves), EL (electroluminescence), UVF (ultraviolet fluorescence), and reflectance. The key findings of this study are: i) the GG modules tend to operate at a higher temperature (1-3℃) than the GB modules at both sites of Arizona and Florida (a lower lifetime is expected for GG modules compared to GB modules); ii) the GG modules tend to experience a higher level of encapsulant discoloration and grid finger degradation than the GB modules at both sites (a higher level of the degradation rate is expected in GG modules compared to GB modules); and, iii) the EVA-based modules tend to have a higher level of discoloration and finger degradation compared to the POE-based modules at both sites.
ContributorsThayumanavan, Rishi Gokul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2023
153712-Thumbnail Image.png
Description
This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules

This is a two-part thesis:

Part 1 characterizes soiling losses using various techniques to understand the effect of soiling on photovoltaic modules. The higher the angle of incidence (AOI), the lower will be the photovoltaic (PV) module performance. Our research group has already reported the AOI investigation for cleaned modules of five different technologies with air/glass interface. However, the modules that are installed in the field would invariably develop a soil layer with varying thickness depending on the site condition, rainfall and tilt angle. The soiled module will have the air/soil/glass interface rather than air/glass interface. This study investigates the AOI variations on soiled modules of five different PV technologies. It is demonstrated that AOI effect is inversely proportional to the soil density. In other words, the power or current loss between clean and soiled modules would be much higher at a higher AOI than at a lower AOI leading to excessive energy production loss of soiled modules on cloudy days, early morning hours and late afternoon hours. Similarly, the spectral influence of soil on the performance of the module was investigated through reflectance and transmittance measurements. It was observed that the reflectance and transmittances losses vary linearly with soil density variation and the 600-700 nm band was identified as an ideal band for soil density measurements.

Part 2 of this thesis performs statistical risk analysis for a power plant through FMECA (Failure Mode, Effect, and Criticality Analysis) based on non-destructive field techniques and count data of the failure modes. Risk Priority Number is used for the grading guideline for criticality analysis. The analysis was done on a 19-year-old power plant in cold-dry climate to identify the most dominant failure and degradation modes. In addition, a comparison study was done on the current power plant (framed) along with another 18-year-old (frameless) from the same climate zone to understand the failure modes for cold-dry climatic condition.
ContributorsBoppana, Sravanthi (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
157910-Thumbnail Image.png
Description
The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease

The goal of any solar photovoltaic (PV) system is to generate maximum energy throughout its lifetime. The parameters that can affect PV module power output include: solar irradiance, temperature, soil accumulation, shading, encapsulant browning, encapsulant delamination, series resistance increase due to solder bond degradation and corrosion and shunt resistance decrease due to potential induced degradation, etc. Several PV modules together in series makes up a string, and in a power plant there are a number of these strings in parallel which can be referred to as an array. Ideally, PV modules in a string should be identically matched to attain maximum power output from the entire string. Any underperforming module or mismatch among modules within a string can reduce the power output. The goal of this project is to quickly identify and quantitatively determine the underperforming module(s) in an operating string without the use of an I-V curve tracer, irradiance sensor or temperature sensor. This goal was achieved by utilizing Radiovoltmeters (RVM). In this project, it is demonstrated that the voltages at maximum power point (Vmax) of all the individual modules in a string can be simultaneously and quantitatively obtained using RVMs at a single irradiance, single module operating temperature, single spectrum and single angle of incidence. By combining these individual module voltages (Vmax) with the string current (Imax) using a Hall sensor, the power output of individual modules can be obtained, quickly and quantitatively.
ContributorsTahghighi, Arash (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2019
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158450-Thumbnail Image.png
Description
In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in

In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in the string; and, iii) current-voltage (I-V) curve tracing of all the modules in the string. In the first and second approaches, the EL images are used to detect the modules with broken cells, and the IR images are used to detect the modules with hotspot cells, respectively. These two methods may identify the modules with defective cells only semi-qualitatively, but not accurately and quantitatively. The third method, I-V curve tracing, is a quantitative method to identify the underperforming modules in a string, but it is an extremely time consuming, labor-intensive, and highly ambient conditions dependent method. Since the I-V curves of individual modules in a string are obtained by disconnecting them individually at different irradiance levels, module operating temperatures, angle of incidences (AOI) and air-masses/spectra, all these measured curves are required to be translated to a single reporting condition (SRC) of a single irradiance, single temperature, single AOI and single spectrum. These translations are not only time consuming but are also prone to inaccuracy due to inherent issues in the translation models. Therefore, the current challenges in using the traditional I-V tracers are related to: i) obtaining I-V curves simultaneously of all the modules and substrings in a string at a single irradiance, operating temperature, irradiance spectrum and angle of incidence due to changing weather parameters and sun positions during the measurements, ii) safety of field personnel when disconnecting and reconnecting of cables in high voltage systems (especially field aged connectors), and iii) enormous time and hardship for the test personnel in harsh outdoor climatic conditions. In this thesis work, a non-contact I-V (NCIV) curve tracing tool has been integrated and implemented to address the above mentioned three challenges of the traditional I-V tracers.

This work compares I-V curves obtained using a traditional I-V curve tracer with the I-V curves obtained using a NCIV curve tracer for the string, substring and individual modules of crystalline silicon (c-Si) and cadmium telluride (CdTe) technologies. The NCIV curve tracer equipment used in this study was integrated using three commercially available components: non-contact voltmeters (NCV) with voltage probes to measure the voltages of substrings/modules in a string, a hall sensor to measure the string current and a DAS (data acquisition system) for simultaneous collection of the voltage data obtained from the NCVs and the current data obtained from the hall sensor. This study demonstrates the concept and accuracy of the NCIV curve tracer by comparing the I-V curves obtained using a traditional capacitor-based tracer and the NCIV curve tracer in a three-module string of c-Si modules and of CdTe modules under natural sunlight with uniform light conditions on all the modules in the string and with partially shading one or more of the modules in the string to simulate and quantitatively detect the underperforming module(s) in a string.
ContributorsMurali, Sanjay (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
158380-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.
ContributorsPrilliman, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
157528-Thumbnail Image.png
Description
Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of

Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of the module. The overall power generation can be significantly increased

by using these bifacial modules. The purpose of this research is to investigate and maximize

the effect of back reflectors, designed to increase the efficiency of the module by utilizing

the intercell light passing through the module to increase the incident irradiance, on the

energy output using different profiles placed at varied distances from the plane of the array

(POA). The optimum reflector profile and displacement of the reflector from the module

are determined experimentally.

Theoretically, a 60-cell bifacial module can produce 26% additional energy in

comparison to a 48-cell bifacial module due to the 12 excess cells found in the 60-cell

module. It was determined that bifacial modules have the capacity to produce additional

energy when optimized back reflectors are utilized. The inverted U reflector produced

higher energy gain when placed at farther distances from the module, indicating direct

dependent proportionality between the placement distance of the reflector from the module

and the output energy gain. It performed the best out of all current construction geometries

with reflective coatings, generating more than half of the additional energy produced by a

densely-spaced 60-cell benchmark module compared to a sparsely-spaced 48-cell reference

module.ii

A gain of 11 and 14% was recorded on cloudy and sunny days respectively for the

inverted U reflector. This implies a reduction in the additional cells of the 60-cell module

by 50% can produce the same amount of energy of the 60-cell module by a 48-cell module

with an inverted U reflector. The use of the back reflectors does not only affect the

additional energy gain but structural and land costs. Row to row spacing for bifacial

systems(arrays) is reduced nearly by half as the ground height clearance is largely

minimized, thus almost 50% of height constraints for mounting bifacial modules, using

back reflectors resulting in reduced structural costs for mounting of bifacial modules
ContributorsMARTIN, PEDRO JESSE (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019