Matching Items (3)
Filtering by

Clear all filters

152891-Thumbnail Image.png
Description
Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as

Leo Kanner first described autism in his 1943 article in Nervous Child titled "Autistic Disturbances of Affective Contact". Throughout, he describes the eleven children with autism in exacting detail. In the closing paragraphs, the parents of autistic children are described as emotionally cold. Yet, he concludes that the condition as he described it was innate. Since its publication, his observations about parents have been a source of controversy surrounding the original definition of autism.

Thus far, histories about autism have pointed to descriptions of parents of autistic children with the claim that Kanner abstained from assigning them causal significance. Understanding the theoretical context in which Kanner's practice was embedded is essential to sorting out how he could have held such seemingly contrary views simultaneously.

This thesis illustrates that Kanner held an explicitly descriptive frame of reference toward his eleven child patients, their parents, and autism. Adolf Meyer, his mentor at Johns Hopkins, trained him to make detailed life-charts under a clinical framework called psychobiology. By understanding that Kanner was a psychobiologist by training, I revisit the original definition of autism as a category of mental disorder and restate its terms. This history illuminates the theoretical context of autism's discovery and has important implications for the first definition of autism amidst shifting theories of childhood mental disorders and the place of the natural sciences in defining them.
ContributorsCohmer, Sean (Author) / Hurlbut, James B (Thesis advisor) / Maienschein, Jane (Committee member) / Laubichler, Manfred (Committee member) / Arizona State University (Publisher)
Created2014
150916-Thumbnail Image.png
Description
Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review

Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review and analyze current theories on the evolution of sex. I then introduce the conflict presented to gene-centric evolution by social phenomena such as altruism and caste sterility in eusocial insects. I review gene-centric models of inclusive fitness and kin selection proposed by Hamilton and Maynard Smith. Based their assumptions, that relatedness should be equal between sterile workers and reproductives, I present several empirical examples that conflict with their models. Following that, I introduce a unique system of genetic caste determination (GCD) observed in hybrid populations of two sister-species of seed harvester ants, Pogonomyrmex rugosus and Pogonomyrmex barbatus. I review the evidence for GCD in those species, followed by a critique of the current gene-centric models used to explain it. In chapter two I present my own theoretical model that is both simple and extricable in nature to explain the origin, evolution, and maintenance of GCD in Pogonomyrmex. Furthermore, I use that model to fill in the gaps left behind by the contributing authors of the other GCD models. As both populations in my study system formed from inter-specific hybridization, I review modern discussions of heterosis (also called hybrid vigor) and use those to help explain the ecological competitiveness of GCD. I empirically address the inbreeding depression the lineages of GCD must overcome in order to remain ecologically stable, demonstrating that as a result of their unique system of caste determination, GCD lineages have elevated recombination frequencies. I summarize and conclude with an argument for why GCD evolved under selective mechanisms which cannot be considered gene-centric, providing evidence that natural selection can effectively operate on non-heritable genotypes appearing in groups and other social contexts.
ContributorsJacobson, Neal (Author) / Gadau, Juergen (Thesis advisor) / Laubichler, Manfred (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
157760-Thumbnail Image.png
Description
Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions

Transgenic experiments in Drosophila have proven to be a useful tool aiding in the

determination of mammalian protein function. A CNS specific protein, dCORL is a

member of the Sno/Ski family. Sno acts as a switch between Dpp/dActivin signaling.

dCORL is involved in Dpp and dActivin signaling, but the two homologous mCORL

protein functions are unknown. Conducting transgenic experiments in the adult wings,

and third instar larval brains using mCORL1, mCORL2 and dCORL are used to provide

insight into the function of these proteins. These experiments show mCORL1 has a

different function from mCORL2 and dCORL when expressed in Drosophila. mCORL2

and dCORL have functional similarities that are likely conserved. Six amino acid

substitutions between mCORL1 and mCORL2/dCORL may be the reason for the

functional difference. The evolutionary implications of this research suggest the

conservation of a switch between Dpp/dActivin signaling that predates the divergence of

arthropods and vertebrates.
ContributorsStinchfield, Michael J (Author) / Newfeld, Stuart J (Thesis advisor) / Capco, David (Committee member) / Laubichler, Manfred (Committee member) / Arizona State University (Publisher)
Created2019