Matching Items (46)
Filtering by

Clear all filters

152799-Thumbnail Image.png
Description
With the increased penetration of solar PV, it has become considerable for the system planners and operators to recognize the impact of PV plant on the power system stability and reliable operation of grid. This enforced the development of adequate PV system models for grid planning and interconnection studies. Western

With the increased penetration of solar PV, it has become considerable for the system planners and operators to recognize the impact of PV plant on the power system stability and reliable operation of grid. This enforced the development of adequate PV system models for grid planning and interconnection studies. Western Electricity Coordinating Council (WECC) Renewable Energy Modeling Task Force has developed generator/converter, electrical controller and plant controller modules to represent positive sequence solar PV plant model for grid interconnection studies. This work performs the validation of these PV plant models against the field measured data. Sheer purpose of this validation effort is to authenticate model accuracy and their capability to represent dynamics of a solar PV plant. Both steady state and dynamic models of PV plant are discussed in this work. An algorithm to fine tune and determine the electrical controller and plant controller module gains is developed. Controller gains as obtained from proposed algorithm is used in PV plant dynamic simulation model. Model is simulated for a capacitor bank switching event and simulated plant response is then compared with field measured data. Validation results demonstrate that, the proposed algorithm is performing well to determine controller gains within the region of interest. Also, it concluded that developed PV plant models are adequate enough to capture PV plant dynamics.
ContributorsSoni, Sachin (Author) / Karady, George G. (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014
152870-Thumbnail Image.png
Description
t temperature (HST) and top-oil temperature (TOT) are reliable indicators of the insulation temperature. The objective of this project is to use thermal models to estimate the transformer's maximum dynamic loading capacity without violating the HST and TOT thermal limits set by the operator. In order to ensure the optimal

t temperature (HST) and top-oil temperature (TOT) are reliable indicators of the insulation temperature. The objective of this project is to use thermal models to estimate the transformer's maximum dynamic loading capacity without violating the HST and TOT thermal limits set by the operator. In order to ensure the optimal loading, the temperature predictions of the thermal models need to be accurate. A number of transformer thermal models are available in the literature. In present practice, the IEEE Clause 7 model is used by the industry to make these predictions. However, a linear regression based thermal model has been observed to be more accurate than the IEEE model. These two models have been studied in this work.

This document presents the research conducted to discriminate between reliable and unreliable models with the help of certain metrics. This was done by first eyeballing the prediction performance and then evaluating a number of mathematical metrics. Efforts were made to recognize the cause behind an unreliable model. Also research was conducted to improve the accuracy of the performance of the existing models.

A new application, described in this document, has been developed to automate the process of building thermal models for multiple transformers. These thermal models can then be used for transformer dynamic loading.
ContributorsRao, Shruti Dwarkanath (Author) / Tylavsky, Daniel J (Thesis advisor) / Holbert, Keith E. (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
153057-Thumbnail Image.png
Description
Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications

Due to increasing integration of renewable resources in the power grid, an efficient high power transmission system is needed in the near future to transfer energy from remote locations to the load centers. Gas Insulated Transmission Line (GIL) is a specialized high power transmission system, designed by Siemens, for applications requiring direct burial or vertical installation of the transmission line. GIL uses SF6 as an insulating medium. Due to unavoidable gas leakages and high global warming potential of SF6, there is a need to replace this insulating gas by some other possible alternative. Insulating foam materials are characterized by excellent dielectric properties as well as their reduced weight. These materials can find their application in GIL as high voltage insulators. Syntactic foam is a polymer based insulating foam. It consists of a large number of microspheres embedded in a polymer matrix.

The work in this thesis deals with the development of the selection proce-dure for an insulating foam for its application in GIL. All the steps in the process are demonstrated considering syntactic foam as an insulator. As the first step of the procedure, a small representative model of the insulating foam is built in COMSOL Multiphysics software with the help of AutoCAD and Excel VBA to analyze electric field distribution for the application of GIL. The effect of the presence of metal particles on the electric field distribution is also observed. The AC voltage withstand test is performed on the insulating foam samples according to the IEEE standards. The effect of the insulating foam on electrical parameters as well as transmission characteristics of the line is analyzed as the last part of the thesis. The results from all the simulations and AC voltage withstand test are ob-served to predict the suitability of the syntactic foam as an insulator in GIL.
ContributorsPendse, Harshada Ganesh (Author) / Karady, George G. (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
153235-Thumbnail Image.png
Description
The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent be-tween the distribution operator and the customer on a real-time basis. Signals are used for auto-mated energy management, protection and

The objective of this thesis is to detect certain cyber attacks in a power distribution ener-gy management system in a Smart Grid infrastructure. In the Smart Grid, signals are sent be-tween the distribution operator and the customer on a real-time basis. Signals are used for auto-mated energy management, protection and energy metering. This thesis aims at making use of various signals in the system to detect cyber attacks. The focus of the thesis is on a cyber attack that changes the parameters of the energy management system. The attacks considered change the set points, thresholds for energy management decisions, signal multipliers, and other digitally stored parameters that ultimately determine the transfer functions of the components. Since the distribution energy management system is assumed to be in a Smart Grid infrastructure, customer demand is elastic to the price of energy. The energy pricing is represented by a distribution loca-tional marginal price. A closed loop control system is utilized as representative of the energy management system. Each element of the system is represented by a linear transfer function. Studies are done via simulations and these simulations are performed in Matlab SimuLink. The analytical calculations are done using Matlab.

Signals from the system are used to obtain the frequency response of the component transfer functions. The magnitude and phase angle of the transfer functions are obtained using the fast Fourier transform. The transfer function phase angles of base cases (no attack) are stored and are compared with the phase angles calculated at regular time intervals. If the difference in the phase characteristics is greater than a set threshold, an alarm is issued indicating the detection of a cyber attack.

The developed algorithm is designed for use in the envisioned Future Renewable Electric Energy Delivery and Management (FREEDM) system. Examples are shown for the noise free and noisy cases.
ContributorsRavi, Vaithinathan (Author) / Heydt, Gerald T (Thesis advisor) / Karady, George G. (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2014
153184-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
ContributorsDixon, William Jesse J (Author) / Heydt, Gerald T (Thesis advisor) / Hedman, Kory W (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
150130-Thumbnail Image.png
Description
All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables'

All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables' outer sheath. A method is presented here to rate the cable sheath using the power developed during dry band arcing. Because of the small diameter of ADSS cables, mechanical vibration is induced in ADSS cable. In order to avoid damage, vibration dampers known as spiral vibration dampers (SVD) are used over these ADSS cables. These dampers are installed near the armor rods, where the presence of leakage current and dry band activity is more. The effect of dampers on dry band activity is investigated by conducting experiments on ADSS cable and dampers. Observations made from the experiments suggest that the hydrophobicity of the cable and damper play a key role in stabilizing dry band arcs. Hydrophobic-ity of the samples have been compared. The importance of hydrophobicity of the samples is further illustrated with the help of simulation results. The results indi-cate that the electric field increases at the edges of water strip. The dry band arc-ing phenomenon could thus be correlated to the hydrophobicity of the outer sur-face of cable and damper.
ContributorsPrabakar, Kumaraguru (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149934-Thumbnail Image.png
Description
This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of increased energy flow to supply the loads, and this requires the design of a limiter which can limit this current to a level which the existing switchgear can interrupt. The FCL limits the fault current to around three times the rated current. Fast switching Insulated-gate bipolar transistor (IGBT) with its gate control logic implements a switching strategy which enables this operation. A complete simulation of the system was built on Simulink and it was verified that the FCL limits the fault current to 1000 A compared to more than 3000 A fault current in the non-existence of a FCL. This setting is made user-defined. In FREEDM system, there is a need to interrupt a fault faster or make intelligent deci-sions relating to fault events, to ensure maximum availability of power to the loads connected to the system. This necessitates fast acquisition of data which is performed by the designed data acquisition system. The microcontroller acquires the data from a current transformer (CT). Mea-surements are made at different points in the FREEDM system and merged together, to input it to the intelligent protection algorithm that has been developed by another student on the project. The algorithm will generate a tripping signal in the event of a fault. The developed hardware and the programmed software to accomplish data acquisition and transmission are presented here. The designed FCL ensures that the existing switchgear equipments need not be replaced thus aiding future power system expansion. The developed data acquisition system enables fast fault sensing in protection schemes improving its reliability.
ContributorsThirumalai, Arvind (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150520-Thumbnail Image.png
Description
This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation and load data of the Texas power system in 2008 are used to construct a test case. To demonstrate the robustness of the method, relia-bility studies have been conducted for a fairly constant as well as for a largely varying wind generation profile. Further, the case of increased wind generation penetration level has been simulated and comments made about the usability of the proposed method to aid in power system planning in scenarios of future expansion of wind energy infrastructure. The second part of this thesis explains the development of a graphic user interface (GUI) to demonstrate the operation of a grid connected doubly fed induction generator (DFIG). The theory of DFIG and its back-to-back power converter is described. The GUI illustrates the power flow, behavior of the electrical circuit and the maximum power point tracking of the machine for a variable wind speed input provided by the user. The tool, although developed on MATLAB software platform, has been constructed to work as a standalone application on Windows operating system based computer and enables even the non-engineering students to access it. Results of both the segments of the thesis are discussed. Remarks are presented about the validity of the reliability technique and GUI interface for variable wind speed conditions. Improvements have been suggested to enable the use of the reliability technique for a more elaborate system. Recommendations have been made about expanding the features of the GUI tool and to use it to promote educational interest about renewable power engineering.
ContributorsSinha, Anubhav (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2012
150747-Thumbnail Image.png
Description
In the future electrical distribution system, it can be predicted that local power generators such as photovoltaic panels or wind turbines will play an important role in local distribution network. The local energy generation and local energy storage device can cause indeterminable power flow, and this could cause severe protection

In the future electrical distribution system, it can be predicted that local power generators such as photovoltaic panels or wind turbines will play an important role in local distribution network. The local energy generation and local energy storage device can cause indeterminable power flow, and this could cause severe protection problems to existing simple overcurrent coordinated distribution protection system. An accurate, fast and reliable protection system based on pilot protection concept is proposed in this thesis. A comprehensive protection design specialized for the FREEDM system - the intelligent fault management (IFM) is presented in detail. In IFM, the pilot-differential protective method is employed as primary protection while the overcurrent protective method is employed as a backup protection. The IFM has been implemented by a real time monitoring program on LabVIEW. A complete sensitivity and selectivity analysis based on simulation is performed to evaluate the protection program performance under various system operating conditions. Followed by the sensitivity analysis, a case study of multiple-terminal model is presented with the possible challenges and potential limitation of the proposed protection system. Furthermore, a micro controller based on a protection system as hardware implementation is studied on a scaled physical test bed. The communication block and signal processing block are accomplished to establish cooperation between the micro-controller hardware and the IFM program. Various fault cases are tested. The result obtained shows that the proposed protection system successfully identifies faults on the test bed and the response time is approximately 1 cycle which is fast compared to the existing commercial protection systems and satisfies the FREEDM system requirement. In the end, an advanced system with faster, dedicated communication media is accomplished. By verifying with the virtual FREEDM system on RTDS, the correctness and the advantages of the proposed method are verified. An ultra fast protection system response time of 4ms is achieved, which is the fastest protection system for a distribution level electrical system.
ContributorsLiu, Xing (Author) / Karady, George G. (Thesis advisor) / Farmer, Richard (Committee member) / Ayyannar, Raja (Committee member) / Arizona State University (Publisher)
Created2012