Matching Items (68)
Filtering by

Clear all filters

152112-Thumbnail Image.png
Description
With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their

With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their friends and acquaintances. In this thesis study, we chose Twitter as our main data platform to analyze shifts and movements of 27 political organizations in Indonesia. So far, we have collected over 30 million tweets and 150,000 news articles from RSS feeds of the corresponding organizations for our analysis. For Twitter data extraction, we developed a multi-threaded application which seamlessly extracts, cleans and stores millions of tweets matching our keywords from Twitter Streaming API. For keyword extraction, we used topics and perspectives which were extracted using n-grams techniques and later approved by our social scientists. After the data is extracted, we aggregate the tweet contents that belong to every user on a weekly basis. Finally, we applied linear and logistic regression using SLEP, an open source sparse learning package to compute weekly score for users and mapping them to one of the 27 organizations on a radical or counter radical scale. Since, we are mapping users to organizations on a weekly basis, we are able to track user's behavior and important new events that triggered shifts among users between organizations. This thesis study can further be extended to identify topics and organization specific influential users and new users from various social media platforms like Facebook, YouTube etc. can easily be mapped to existing organizations on a radical or counter-radical scale.
ContributorsPoornachandran, Sathishkumar (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151517-Thumbnail Image.png
Description
Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.
ContributorsBhattacharya, Indrani (Author) / Sen, Arunabha (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
151527-Thumbnail Image.png
Description
Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation of effective, yet low-cost protection mechanism. The basic idea is that, there is a high probability that a soft-fault in program execution will eventually alter the control flow of the program. Therefore just by making sure that the control flow of the program is correct, significant protection can be achieved. More than a dozen techniques for CFC have been developed over the last several decades, ranging from hardware techniques, software techniques, and hardware-software hybrid techniques as well. Our analysis shows that existing CFC techniques are not only ineffective in protecting from soft errors, but cause additional power and performance overheads. For this analysis, we develop and validate a simulation based experimental setup to accurately and quantitatively estimate the architectural vulnerability of a program execution on a processor micro-architecture. We model the protection achieved by various state-of-the-art CFC techniques in this quantitative vulnerability estimation setup, and find out that software only CFC protection schemes (CFCSS, CFCSS+NA, CEDA) increase system vulnerability by 18% to 21% with 17% to 38% performance overhead. Hybrid CFC protection (CFEDC) increases vulnerability by 5%, while the vulnerability remains almost the same for hardware only CFC protection (CFCET); notwithstanding the hardware overheads of design cost, area, and power incurred in the hardware modifications required for their implementations.
ContributorsRhisheekesan, Abhishek (Author) / Shrivastava, Aviral (Thesis advisor) / Colbourn, Charles Joseph (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
ContributorsBhyravajosyula, Sai Vishnu Kiran (Author) / Syrotiuk, Violet R. (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2013
151851-Thumbnail Image.png
Description
In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.
ContributorsYang, Hengyi (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2013
152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
ContributorsBoyd, Jeffrey Michael (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Shrivastava, Aviral (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
152905-Thumbnail Image.png
Description
Coarse-Grained Reconfigurable Architectures (CGRA) are a promising fabric for improving the performance and power-efficiency of computing devices. CGRAs are composed of components that are well-optimized to execute loops and rotating register file is an example of such a component present in CGRAs. Due to the rotating nature of register indexes

Coarse-Grained Reconfigurable Architectures (CGRA) are a promising fabric for improving the performance and power-efficiency of computing devices. CGRAs are composed of components that are well-optimized to execute loops and rotating register file is an example of such a component present in CGRAs. Due to the rotating nature of register indexes in rotating register file, it is very challenging, if at all possible, to hold and properly index memory addresses (pointers) and static values. In this Thesis, different structures for CGRA register files are investigated. Those structures are experimentally compared in terms of performance of mapped applications, design frequency, and area. It is shown that a register file that can logically be partitioned into rotating and non-rotating regions is an excellent choice because it imposes the minimum restriction on underlying CGRA mapping algorithm while resulting in efficient resource utilization.
ContributorsSaluja, Dipal (Author) / Shrivastava, Aviral (Thesis advisor) / Lee, Yann-Hang (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2014
153089-Thumbnail Image.png
Description
A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other

A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other portable computing systems, energy is a limited resource. Based on the energy characterization of a commercial widely-used smartphone, application cores are found to consume a significant part of the total energy consumption of the device. With this insight, the subsequent part of this thesis focuses on the portion of energy that is spent to move data from the memory system to the application core's internal registers. The primary motivation for this work comes from the relatively higher power consumption associated with a data movement instruction compared to that of an arithmetic instruction. The data movement energy cost is worsened esp. in a System on Chip (SoC) because the amount of data received and exchanged in a SoC based smartphone increases at an explosive rate. A detailed investigation is performed to quantify the impact of data movement

on the overall energy consumption of a smartphone device. To aid this study, microbenchmarks that generate desired data movement patterns between different levels of the memory hierarchy are designed. Energy costs of data movement are then computed by measuring the instantaneous power consumption of the device when the micro benchmarks are executed. This work makes an extensive use of hardware performance counters to validate the memory access behavior of microbenchmarks and to characterize the energy consumed in moving data. Finally, the calculated energy costs of data movement are used to characterize the portion of energy that MobileBench applications spend in moving data. The results of this study show that a significant 35% of the total device energy is spent in data movement alone. Energy is an increasingly important criteria in the context of designing architectures for future smartphones and this thesis offers insights into data movement energy consumption.
ContributorsPandiyan, Dhinakaran (Author) / Wu, Carole-Jean (Thesis advisor) / Shrivastava, Aviral (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2014
153033-Thumbnail Image.png
Description
Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of

achieving high performance at low power consumption. While CGRAs can efficiently

accelerate loop kernels, accelerating loops with control flow (loops with if-then-else

structures) is quite challenging. Techniques that handle control flow execution in

CGRAs generally use predication. Such techniques execute both branches of an

if-then-else

Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of

achieving high performance at low power consumption. While CGRAs can efficiently

accelerate loop kernels, accelerating loops with control flow (loops with if-then-else

structures) is quite challenging. Techniques that handle control flow execution in

CGRAs generally use predication. Such techniques execute both branches of an

if-then-else structure and select outcome of either branch to commit based on the

result of the conditional. This results in poor utilization of CGRA s computational

resources. Dual-issue scheme which is the state of the art technique for control flow

fetches instructions from both paths of the branch and selects one to execute at

runtime based on the result of the conditional. This technique has an overhead in

instruction fetch bandwidth. In this thesis, to improve performance of control flow

execution in CGRAs, I propose a solution in which the result of the conditional

expression that decides the branch outcome is communicated to the instruction fetch

unit to selectively issue instructions from the path taken by the branch at run time.

Experimental results show that my solution can achieve 34.6% better performance

and 52.1% improvement in energy efficiency on an average compared to state of the

art dual issue scheme without imposing any overhead in instruction fetch bandwidth.
ContributorsRajendran Radhika, Shri Hari (Author) / Shrivastava, Aviral (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2014
153040-Thumbnail Image.png
Description
Android has been the dominant platform in which most of the mobile development is being done. By the end of the second quarter of 2014, 84.7 percent of the entire world mobile phones market share had been captured by Android. The Android library internally uses the modified Linux kernel as

Android has been the dominant platform in which most of the mobile development is being done. By the end of the second quarter of 2014, 84.7 percent of the entire world mobile phones market share had been captured by Android. The Android library internally uses the modified Linux kernel as the part of its stack. The I/O scheduler, is a part of the Linux kernel, responsible for scheduling data requests to the internal and the external memory devices that are attached to the mobile systems.

The usage of solid state drives in the Android tablet has also seen a rise owing to its speed of operation and mechanical stability. The I/O schedulers that exist in the present Linux kernel are not better suited for handling solid state drives in particular to exploit the inherent parallelism offered by the solid state drives. The Android provides information to the Linux kernel about the processes running in the foreground and background. Based on this information the kernel decides the process scheduling and the memory management, but no such information exists for the I/O scheduling. Research shows that the resource management could be done better if the operating system is aware of the characteristics of the requester. Thus, there is a need for a better I/O scheduler that could schedule I/O operations based on the application and also exploit the parallelism in the solid state drives. The scheduler proposed through this research does that. It contains two algorithms working in unison one focusing on the solid state drives and the other on the application awareness.

The Android application context aware scheduler has the features of increasing the responsiveness of the time sensitive applications and also increases the throughput by parallel scheduling of request in the solid state drive. The suggested scheduler is tested using standard benchmarks and real-time scenarios, the results convey that our scheduler outperforms the existing default completely fair queuing scheduler of the Android.
ContributorsSivasankaran, Jeevan Prasath (Author) / Lee, Yann Hang (Thesis advisor) / Wu, Carole-Jean (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2014